Spaces:
Runtime error
Runtime error
struct Stats { | |
std::vector<float> values; | |
int ncall = 0; | |
}; | |
struct StatParams { | |
std::string dataset; | |
std::string ofile = "imatrix.dat"; | |
int n_output_frequency = 10; | |
int verbosity = 1; | |
int keep_every = 0; | |
bool collect_output_weight = false; | |
}; | |
class IMatrixCollector { | |
public: | |
IMatrixCollector() = default; | |
void set_parameters(StatParams&& params) { m_params = std::move(params); } | |
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data); | |
void save_imatrix() const; | |
bool load_imatrix(const char * file_name, bool add); | |
static bool load_imatrix(const char * file_name, std::unordered_map<std::string, Stats>& imatrix); | |
private: | |
std::unordered_map<std::string, Stats> m_stats; | |
StatParams m_params; | |
std::mutex m_mutex; | |
int m_last_call = 0; | |
std::vector<float> m_src1_data; | |
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id | |
// | |
void save_imatrix(const char * file_name, const char * dataset) const; | |
void keep_imatrix(int ncall) const; | |
}; | |
// remove any prefix and suffixes from the name | |
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight | |
static std::string filter_tensor_name(const char * name) { | |
std::string wname; | |
const char * p = strchr(name, '#'); | |
if (p != NULL) { | |
p = p + 1; | |
const char * q = strchr(p, '#'); | |
if (q != NULL) { | |
wname = std::string(p, q - p); | |
} else { | |
wname = p; | |
} | |
} else { | |
wname = name; | |
} | |
return wname; | |
} | |
bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { | |
GGML_UNUSED(user_data); | |
const struct ggml_tensor * src0 = t->src[0]; | |
const struct ggml_tensor * src1 = t->src[1]; | |
std::string wname = filter_tensor_name(src0->name); | |
// when ask is true, the scheduler wants to know if we are interested in data from this tensor | |
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection | |
if (ask) { | |
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications | |
if (t->op != GGML_OP_MUL_MAT) return false; | |
// why are small batches ignored (<16 tokens)? | |
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false; | |
if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false; | |
return true; | |
} | |
std::lock_guard<std::mutex> lock(m_mutex); | |
// copy the data from the GPU memory if needed | |
const bool is_host = ggml_backend_buffer_is_host(src1->buffer); | |
if (!is_host) { | |
m_src1_data.resize(ggml_nelements(src1)); | |
ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1)); | |
} | |
const float * data = is_host ? (const float *) src1->data : m_src1_data.data(); | |
// this has been adapted to the new format of storing merged experts in a single 3d tensor | |
// ref: https://github.com/ggerganov/llama.cpp/pull/6387 | |
if (t->op == GGML_OP_MUL_MAT_ID) { | |
// ids -> [n_experts_used, n_tokens] | |
// src1 -> [cols, n_expert_used, n_tokens] | |
const ggml_tensor * ids = t->src[2]; | |
const int n_as = src0->ne[2]; | |
const int n_ids = ids->ne[0]; | |
// the top-k selected expert ids are stored in the ids tensor | |
// for simplicity, always copy ids to host, because it is small | |
// take into account that ids is not contiguous! | |
GGML_ASSERT(ids->ne[1] == src1->ne[2]); | |
m_ids.resize(ggml_nbytes(ids)); | |
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids)); | |
auto & e = m_stats[wname]; | |
++e.ncall; | |
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger | |
// using the following line, we can correct for that if needed by replacing the line above with: | |
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall; | |
if (e.values.empty()) { | |
e.values.resize(src1->ne[0]*n_as, 0); | |
} | |
else if (e.values.size() != (size_t)src1->ne[0]*n_as) { | |
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as); | |
exit(1); //GGML_ASSERT(false); | |
} | |
if (m_params.verbosity > 1) { | |
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type); | |
} | |
// loop over all possible experts, regardless if they are used or not in the batch | |
for (int ex = 0; ex < n_as; ++ex) { | |
size_t e_start = ex*src1->ne[0]; | |
for (int idx = 0; idx < n_ids; ++idx) { | |
for (int row = 0; row < (int)src1->ne[2]; ++row) { | |
const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]); | |
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check | |
if (excur != ex) continue; | |
const int64_t i11 = idx % src1->ne[1]; | |
const int64_t i12 = row; | |
const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]); | |
for (int j = 0; j < (int)src1->ne[0]; ++j) { | |
e.values[e_start + j] += x[j]*x[j]; | |
} | |
} | |
} | |
if (e.ncall > m_last_call) { | |
m_last_call = e.ncall; | |
if (m_last_call % m_params.n_output_frequency == 0) { | |
save_imatrix(); | |
} | |
if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) { | |
keep_imatrix(m_last_call); | |
} | |
} | |
} | |
} else { | |
auto& e = m_stats[wname]; | |
if (e.values.empty()) { | |
e.values.resize(src1->ne[0], 0); | |
} | |
else if (e.values.size() != (size_t)src1->ne[0]) { | |
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); | |
exit(1); //GGML_ASSERT(false); | |
} | |
++e.ncall; | |
if (m_params.verbosity > 1) { | |
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); | |
} | |
for (int row = 0; row < (int)src1->ne[1]; ++row) { | |
const float * x = data + row * src1->ne[0]; | |
for (int j = 0; j < (int)src1->ne[0]; ++j) { | |
e.values[j] += x[j]*x[j]; | |
} | |
} | |
if (e.ncall > m_last_call) { | |
m_last_call = e.ncall; | |
if (m_last_call % m_params.n_output_frequency == 0) { | |
save_imatrix(); | |
} | |
if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) { | |
keep_imatrix(m_last_call); | |
} | |
} | |
} | |
return true; | |
} | |
void IMatrixCollector::save_imatrix() const { | |
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(), m_params.dataset.c_str()); | |
} | |
void IMatrixCollector::keep_imatrix(int ncall) const { | |
auto file_name = m_params.ofile; | |
if (file_name.empty()) file_name = "imatrix.dat"; | |
file_name += ".at_"; | |
file_name += std::to_string(ncall); | |
save_imatrix(file_name.c_str(), m_params.dataset.c_str()); | |
} | |
void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) const { | |
std::ofstream out(fname, std::ios::binary); | |
int n_entries = m_stats.size(); | |
out.write((const char *) &n_entries, sizeof(n_entries)); | |
for (const auto & p : m_stats) { | |
int len = p.first.size(); | |
out.write((const char *) &len, sizeof(len)); | |
out.write(p.first.c_str(), len); | |
out.write((const char *) &p.second.ncall, sizeof(p.second.ncall)); | |
int nval = p.second.values.size(); | |
out.write((const char *) &nval, sizeof(nval)); | |
if (nval > 0) out.write((const char *) p.second.values.data(), nval * sizeof(float)); | |
} | |
// Write the number of call the matrix was computed with | |
out.write((const char *) &m_last_call, sizeof(m_last_call)); | |
// Write the dataset name at the end of the file to later on specify it in quantize | |
int n_dataset = strlen(dataset); | |
out.write((const char *) &n_dataset, sizeof(n_dataset)); | |
out.write(dataset, n_dataset); | |
if (m_params.verbosity > 0) { | |
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname); | |
} | |
} | |
bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_map<std::string, Stats>& imatrix_data) { | |
std::ifstream in(imatrix_file, std::ios::binary); | |
if (!in) { | |
printf("%s: failed to open %s\n",__func__,imatrix_file); | |
return false; | |
} | |
int n_entries; | |
in.read((char*)&n_entries, sizeof(n_entries)); | |
if (in.fail() || n_entries < 1) { | |
printf("%s: no data in file %s\n", __func__, imatrix_file); | |
return false; | |
} | |
for (int i = 0; i < n_entries; ++i) { | |
int len; in.read((char *)&len, sizeof(len)); | |
std::vector<char> name_as_vec(len+1); | |
in.read((char *)name_as_vec.data(), len); | |
if (in.fail()) { | |
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file); | |
return false; | |
} | |
name_as_vec[len] = 0; | |
std::string name{name_as_vec.data()}; | |
auto& e = imatrix_data[std::move(name)]; | |
int ncall; | |
in.read((char*)&ncall, sizeof(ncall)); | |
int nval; | |
in.read((char *)&nval, sizeof(nval)); | |
if (in.fail() || nval < 1) { | |
printf("%s: failed reading number of values for entry %d\n",__func__,i); | |
imatrix_data = {}; | |
return false; | |
} | |
e.values.resize(nval); | |
in.read((char*)e.values.data(), nval*sizeof(float)); | |
if (in.fail()) { | |
printf("%s: failed reading data for entry %d\n",__func__,i); | |
imatrix_data = {}; | |
return false; | |
} | |
e.ncall = ncall; | |
} | |
return true; | |
} | |
bool IMatrixCollector::load_imatrix(const char * file_name, bool add) { | |
if (!add) { | |
m_stats.clear(); | |
} | |
return load_imatrix(file_name, m_stats); | |
} | |
static IMatrixCollector g_collector; | |
static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { | |
return g_collector.collect_imatrix(t, ask, user_data); | |
} | |
struct results_log_softmax { | |
double log_softmax; | |
float logit; | |
float prob; | |
}; | |
static std::vector<float> softmax(const std::vector<float>& logits) { | |
std::vector<float> probs(logits.size()); | |
float max_logit = logits[0]; | |
for (float v : logits) { | |
max_logit = std::max(max_logit, v); | |
} | |
double sum_exp = 0.0; | |
for (size_t i = 0; i < logits.size(); i++) { | |
// Subtract the maximum logit value from the current logit value for numerical stability | |
const float logit = logits[i] - max_logit; | |
const float exp_logit = expf(logit); | |
sum_exp += exp_logit; | |
probs[i] = exp_logit; | |
} | |
for (size_t i = 0; i < probs.size(); i++) { | |
probs[i] /= sum_exp; | |
} | |
return probs; | |
} | |
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { | |
float max_logit = logits[0]; | |
for (int i = 1; i < n_vocab; ++i) { | |
max_logit = std::max(max_logit, logits[i]); | |
} | |
double sum_exp = 0.0; | |
for (int i = 0; i < n_vocab; ++i) { | |
sum_exp += expf(logits[i] - max_logit); | |
} | |
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; | |
} | |
static void process_logits( | |
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers, | |
double & nll, double & nll2, float * logit_history, float * prob_history | |
) { | |
std::mutex mutex; | |
int counter = 0; | |
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { | |
double local_nll = 0; | |
double local_nll2 = 0; | |
while (true) { | |
std::unique_lock<std::mutex> lock(mutex); | |
int i = counter++; | |
if (i >= n_token) { | |
nll += local_nll; nll2 += local_nll2; | |
break; | |
} | |
lock.unlock(); | |
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]); | |
const double v = -results.log_softmax; | |
local_nll += v; | |
local_nll2 += v*v; | |
logit_history[i] = results.logit; | |
prob_history[i] = results.prob; | |
} | |
}; | |
for (auto & w : workers) { | |
w = std::thread(compute); | |
} | |
compute(); | |
for (auto & w : workers) { | |
w.join(); | |
} | |
} | |
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl, int from_chunk) { | |
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); | |
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); | |
const int n_ctx = llama_n_ctx(ctx); | |
auto tim1 = std::chrono::high_resolution_clock::now(); | |
fprintf(stderr, "%s: tokenizing the input ..\n", __func__); | |
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true); | |
auto tim2 = std::chrono::high_resolution_clock::now(); | |
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count()); | |
if (from_chunk > 0) { | |
if (size_t((from_chunk + 2)*n_ctx) >= tokens.size()) { | |
fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, from_chunk); | |
return false; | |
} | |
fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, from_chunk, from_chunk*n_ctx); | |
tokens.erase(tokens.begin(), tokens.begin() + from_chunk*n_ctx); | |
} | |
if (int(tokens.size()) < 2*n_ctx) { | |
fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx, | |
n_ctx); | |
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); | |
return false; | |
} | |
std::vector<float> logit_history; | |
std::vector<float> prob_history; | |
if (compute_ppl) { | |
logit_history.resize(tokens.size()); | |
prob_history.resize(tokens.size()); | |
} | |
const int n_chunk_max = tokens.size() / n_ctx; | |
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); | |
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); | |
const int n_batch = params.n_batch; | |
int count = 0; | |
double nll = 0.0; | |
double nll2 = 0.0; | |
fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch); | |
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1); | |
const int num_batches = (n_ctx + n_batch - 1) / n_batch; | |
std::vector<float> logits; | |
if (compute_ppl && num_batches > 1) { | |
logits.reserve((size_t)n_ctx * n_vocab); | |
} | |
for (int i = 0; i < n_chunk; ++i) { | |
const int start = i * n_ctx; | |
const int end = start + n_ctx; | |
std::vector<float> logits; | |
const auto t_start = std::chrono::high_resolution_clock::now(); | |
// clear the KV cache | |
llama_kv_cache_clear(ctx); | |
for (int j = 0; j < num_batches; ++j) { | |
const int batch_start = start + j * n_batch; | |
const int batch_size = std::min(end - batch_start, n_batch); | |
// save original token and restore it after eval | |
const auto token_org = tokens[batch_start]; | |
// add BOS token for the first batch of each chunk | |
if (add_bos && j == 0) { | |
tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); | |
} | |
// TODO: use batch.logits to save computations instead of relying on logits_all == true | |
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { | |
fprintf(stderr, "%s : failed to eval\n", __func__); | |
return false; | |
} | |
// restore the original token in case it was set to BOS | |
tokens[batch_start] = token_org; | |
if (compute_ppl && num_batches > 1) { | |
const auto * batch_logits = llama_get_logits(ctx); | |
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); | |
} | |
} | |
const auto t_end = std::chrono::high_resolution_clock::now(); | |
if (i == 0) { | |
const float t_total = std::chrono::duration<float>(t_end - t_start).count(); | |
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); | |
int total_seconds = (int)(t_total * n_chunk); | |
if (total_seconds >= 60*60) { | |
fprintf(stderr, "%d hours ", total_seconds / (60*60)); | |
total_seconds = total_seconds % (60*60); | |
} | |
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); | |
} | |
if (compute_ppl) { | |
const int first = n_ctx/2; | |
const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); | |
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, | |
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); | |
count += n_ctx - first - 1; | |
printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); | |
fflush(stdout); | |
logits.clear(); | |
} | |
} | |
printf("\n"); | |
if (compute_ppl) { | |
nll2 /= count; | |
nll /= count; | |
const double ppl = exp(nll); | |
nll2 -= nll * nll; | |
if (nll2 > 0) { | |
nll2 = sqrt(nll2/(count-1)); | |
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); | |
} else { | |
printf("Unexpected negative standard deviation of log(prob)\n"); | |
} | |
} | |
return true; | |
} | |
int main(int argc, char ** argv) { | |
StatParams sparams; | |
std::string prev_result_file; | |
std::string combine_files; | |
bool compute_ppl = true; | |
int from_chunk = 0; | |
std::vector<char*> args; | |
args.push_back(argv[0]); | |
int iarg = 1; | |
for (; iarg < argc-1; ++iarg) { | |
std::string arg{argv[iarg]}; | |
if (arg == "-o" || arg == "--output-file") { | |
sparams.ofile = argv[++iarg]; | |
} | |
else if (arg == "-ofreq" || arg == "--output-frequency") { | |
sparams.n_output_frequency = std::stoi(argv[++iarg]); | |
} | |
else if (arg == "-ow" || arg == "--output-weight") { | |
sparams.collect_output_weight = std::stoi(argv[++iarg]); | |
} | |
else if (arg == "--verbosity") { | |
sparams.verbosity = std::stoi(argv[++iarg]); | |
} else if (arg == "--no-ppl") { | |
compute_ppl = false; | |
} else if (arg == "--keep-imatrix") { | |
sparams.keep_every = std::stoi(argv[++iarg]); | |
} else if (arg == "--continue-from") { | |
prev_result_file = argv[++iarg]; | |
} else if (arg == "--combine") { | |
combine_files = argv[++iarg]; | |
} | |
else if (arg == "--from-chunk") { | |
from_chunk = std::stoi(argv[++iarg]); | |
} else { | |
args.push_back(argv[iarg]); | |
} | |
} | |
if (iarg < argc) { | |
std::string arg{argv[iarg]}; | |
if (arg == "--no-ppl") { | |
compute_ppl = false; | |
} else { | |
args.push_back(argv[iarg]); | |
} | |
} | |
gpt_params params; | |
params.n_batch = 512; | |
if (!gpt_params_parse(args.size(), args.data(), params)) { | |
return 1; | |
} | |
params.logits_all = true; | |
params.n_batch = std::min(params.n_batch, params.n_ctx); | |
print_build_info(); | |
if (params.seed == LLAMA_DEFAULT_SEED) { | |
params.seed = time(NULL); | |
} | |
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); | |
std::mt19937 rng(params.seed); | |
if (params.random_prompt) { | |
params.prompt = gpt_random_prompt(rng); | |
} | |
sparams.dataset = params.prompt_file; | |
g_collector.set_parameters(std::move(sparams)); | |
if (!combine_files.empty()) { | |
std::vector<std::string> files; | |
size_t pos = 0; | |
while (true) { | |
auto new_pos = combine_files.find(',', pos); | |
if (new_pos != std::string::npos) { | |
files.emplace_back(combine_files.substr(pos, new_pos - pos)); | |
pos = new_pos + 1; | |
} else { | |
files.emplace_back(combine_files.substr(pos)); | |
break; | |
} | |
} | |
if (files.size() < 2) { | |
fprintf(stderr, "You must provide at least two comma separated files to use --combine\n"); | |
return 1; | |
} | |
printf("Combining the following %d files\n", int(files.size())); | |
for (auto& file : files) { | |
printf(" %s\n", file.c_str()); | |
if (!g_collector.load_imatrix(file.c_str(), true)) { | |
fprintf(stderr, "Failed to load %s\n", file.c_str()); | |
return 1; | |
} | |
} | |
g_collector.save_imatrix(); | |
return 0; | |
} | |
if (!prev_result_file.empty()) { | |
if (!g_collector.load_imatrix(prev_result_file.c_str(), false)) { | |
fprintf(stderr, "=============== Failed to load %s\n", prev_result_file.c_str()); | |
return 1; | |
} | |
} | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
// pass the callback to the backend scheduler | |
// it will be executed for each node during the graph computation | |
params.cb_eval = ik_collect_imatrix; | |
params.cb_eval_user_data = NULL; | |
params.warmup = false; | |
// init | |
llama_model * model; | |
llama_context * ctx; | |
std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
if (model == nullptr || ctx == nullptr) { | |
fprintf(stderr, "%s : failed to init\n", __func__); | |
return 1; | |
} | |
const int n_ctx_train = llama_n_ctx_train(model); | |
if (params.n_ctx > n_ctx_train) { | |
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", | |
__func__, n_ctx_train, params.n_ctx); | |
} | |
// print system information | |
{ | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "%s\n", get_system_info(params).c_str()); | |
} | |
bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk); | |
if (!OK) { | |
return 1; | |
} | |
g_collector.save_imatrix(); | |
llama_print_timings(ctx); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
return 0; | |
} | |