Spaces:
Runtime error
Runtime error
int main(int argc, char ** argv){ | |
gpt_params params; | |
if (!gpt_params_parse(argc, argv, params)) { | |
return 1; | |
} | |
// max. number of additional tokens to draft if match is found | |
const int n_draft = params.n_draft; | |
const bool dump_kv_cache = params.dump_kv_cache; | |
log_set_target(log_filename_generator("lookup", "log")); | |
LOG_TEE("Log start\n"); | |
log_dump_cmdline(argc, argv); | |
// init llama.cpp | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
llama_model * model = NULL; | |
llama_context * ctx = NULL; | |
// load the model | |
std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); | |
// tokenize the prompt | |
std::vector<llama_token> inp; | |
inp = ::llama_tokenize(ctx, params.prompt, true, true); | |
llama_ngram_cache ngram_cache_context; | |
llama_ngram_cache ngram_cache_dynamic; | |
llama_ngram_cache ngram_cache_static; | |
int64_t t_draft_flat_us = 0; | |
int64_t t_draft_us = 0; | |
{ | |
// Fill up context ngram cache with tokens from user input: | |
const int64_t t_start_draft_us = ggml_time_us(); | |
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false); | |
if (!params.lookup_cache_static.empty()) { | |
try { | |
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static); | |
} catch (std::ifstream::failure const &) { | |
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str()); | |
exit(1); | |
} | |
} | |
if (!params.lookup_cache_dynamic.empty()) { | |
try { | |
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic); | |
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program | |
} | |
t_draft_flat_us += ggml_time_us() - t_start_draft_us; | |
} | |
const int max_context_size = llama_n_ctx(ctx); | |
const int max_tokens_list_size = max_context_size - 4; | |
if ((int) inp.size() > max_tokens_list_size) { | |
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); | |
return 1; | |
} | |
fprintf(stderr, "\n\n"); | |
for (auto id : inp) { | |
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); | |
} | |
fflush(stderr); | |
const int n_input = inp.size(); | |
const auto t_enc_start = ggml_time_us(); | |
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0)); | |
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0)); | |
const auto t_enc_end = ggml_time_us(); | |
int n_predict = 0; | |
int n_drafted = 0; | |
int n_accept = 0; | |
int n_past = inp.size(); | |
bool has_eos = false; | |
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams); | |
std::vector<llama_token> draft; | |
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1); | |
// debug | |
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1); | |
const auto t_dec_start = ggml_time_us(); | |
while (true) { | |
// debug | |
if (dump_kv_cache) { | |
llama_kv_cache_view_update(ctx, &kvc_view); | |
dump_kv_cache_view_seqs(kvc_view, 40); | |
} | |
// print current draft sequence | |
LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str()); | |
int i_dft = 0; | |
while (true) { | |
// sample from the target model | |
llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft); | |
llama_sampling_accept(ctx_sampling, ctx, id, true); | |
const std::string token_str = llama_token_to_piece(ctx, id); | |
if (!params.use_color) { | |
printf("%s", token_str.c_str()); | |
} | |
if (llama_token_is_eog(model, id)) { | |
has_eos = true; | |
} | |
++n_predict; | |
// check if the target token matches the draft | |
if (i_dft < (int) draft.size() && id == draft[i_dft]) { | |
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str()); | |
++n_accept; | |
++n_past; | |
++i_dft; | |
inp.push_back(id); | |
{ | |
// Update context ngram cache with the newly accepted token: | |
const int64_t t_start_draft_us = ggml_time_us(); | |
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false); | |
t_draft_us += ggml_time_us() - t_start_draft_us; | |
} | |
if (params.use_color) { | |
// color accepted draft token | |
printf("\033[34m%s\033[0m", token_str.c_str()); | |
fflush(stdout); | |
} | |
continue; | |
} | |
if (params.use_color) { | |
printf("%s", token_str.c_str()); | |
} | |
fflush(stdout); | |
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str()); | |
draft.clear(); | |
draft.push_back(id); | |
inp.push_back(id); | |
{ | |
// Update context ngram cache with the newly accepted token: | |
const int64_t t_start_draft_us = ggml_time_us(); | |
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false); | |
t_draft_us += ggml_time_us() - t_start_draft_us; | |
} | |
break; | |
} | |
if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) { | |
break; | |
} | |
// KV cache management | |
// clean the cache of draft tokens that weren't accepted | |
llama_kv_cache_seq_rm(ctx, 0, n_past, -1); | |
llama_batch_clear(batch_tgt); | |
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true); | |
// Draft already contains a single token sampled from the model: | |
GGML_ASSERT(draft.size() == 1); | |
GGML_ASSERT(draft[0] == inp.back()); | |
const int64_t t_start_draft_us = ggml_time_us(); | |
llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static); | |
for (size_t i = 1; i < draft.size(); ++i) { | |
llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true); | |
} | |
t_draft_us += ggml_time_us() - t_start_draft_us; | |
n_drafted += draft.size() - 1; | |
llama_decode(ctx, batch_tgt); | |
++n_past; | |
draft.erase(draft.begin()); | |
} | |
auto t_dec_end = ggml_time_us(); | |
// Update dynamic ngram cache with context ngram cache and save it to disk: | |
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context); | |
llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic); | |
LOG_TEE("\n\n"); | |
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); | |
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); | |
LOG_TEE("\n"); | |
LOG_TEE("n_draft = %d\n", n_draft); | |
LOG_TEE("n_predict = %d\n", n_predict); | |
LOG_TEE("n_drafted = %d\n", n_drafted); | |
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3); | |
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", | |
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); | |
LOG_TEE("n_accept = %d\n", n_accept); | |
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); | |
LOG_TEE("\ntarget:\n"); | |
llama_print_timings(ctx); | |
llama_sampling_free(ctx_sampling); | |
llama_batch_free(batch_tgt); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
fprintf(stderr, "\n\n"); | |
return 0; | |
} | |