Spaces:
Runtime error
Runtime error
template <int block_size> | |
static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) { | |
const int row = blockIdx.x*blockDim.y + threadIdx.y; | |
const int tid = threadIdx.x; | |
float2 mean_var = make_float2(0.f, 0.f); | |
for (int col = tid; col < ncols; col += block_size) { | |
const float xi = x[row*ncols + col]; | |
mean_var.x += xi; | |
mean_var.y += xi * xi; | |
} | |
// sum up partial sums | |
mean_var = warp_reduce_sum(mean_var); | |
if (block_size > WARP_SIZE) { | |
__shared__ float2 s_sum[32]; | |
int warp_id = threadIdx.x / WARP_SIZE; | |
int lane_id = threadIdx.x % WARP_SIZE; | |
if (lane_id == 0) { | |
s_sum[warp_id] = mean_var; | |
} | |
__syncthreads(); | |
mean_var = s_sum[lane_id]; | |
mean_var = warp_reduce_sum(mean_var); | |
} | |
const float mean = mean_var.x / ncols; | |
const float var = mean_var.y / ncols - mean * mean; | |
const float inv_std = rsqrtf(var + eps); | |
for (int col = tid; col < ncols; col += block_size) { | |
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std; | |
} | |
} | |
template <int block_size> | |
static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) { | |
// blockIdx.x: num_groups idx | |
// threadIdx.x: block_size idx | |
int start = blockIdx.x * group_size; | |
int end = start + group_size; | |
start += threadIdx.x; | |
if (end >= ne_elements) { | |
end = ne_elements; | |
} | |
float tmp = 0.0f; // partial sum for thread in warp | |
for (int j = start; j < end; j += block_size) { | |
tmp += x[j]; | |
} | |
tmp = warp_reduce_sum(tmp); | |
if (block_size > WARP_SIZE) { | |
__shared__ float s_sum[32]; | |
int warp_id = threadIdx.x / WARP_SIZE; | |
int lane_id = threadIdx.x % WARP_SIZE; | |
if (lane_id == 0) { | |
s_sum[warp_id] = tmp; | |
} | |
__syncthreads(); | |
tmp = s_sum[lane_id]; | |
tmp = warp_reduce_sum(tmp); | |
} | |
float mean = tmp / group_size; | |
tmp = 0.0f; | |
for (int j = start; j < end; j += block_size) { | |
float xi = x[j] - mean; | |
dst[j] = xi; | |
tmp += xi * xi; | |
} | |
tmp = warp_reduce_sum(tmp); | |
if (block_size > WARP_SIZE) { | |
__shared__ float s_sum[32]; | |
int warp_id = threadIdx.x / WARP_SIZE; | |
int lane_id = threadIdx.x % WARP_SIZE; | |
if (lane_id == 0) { | |
s_sum[warp_id] = tmp; | |
} | |
__syncthreads(); | |
tmp = s_sum[lane_id]; | |
tmp = warp_reduce_sum(tmp); | |
} | |
float variance = tmp / group_size; | |
float scale = rsqrtf(variance + eps); | |
for (int j = start; j < end; j += block_size) { | |
dst[j] *= scale; | |
} | |
} | |
template <int block_size> | |
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) { | |
const int row = blockIdx.x*blockDim.y + threadIdx.y; | |
const int tid = threadIdx.x; | |
float tmp = 0.0f; // partial sum for thread in warp | |
for (int col = tid; col < ncols; col += block_size) { | |
const float xi = x[row*ncols + col]; | |
tmp += xi * xi; | |
} | |
// sum up partial sums | |
tmp = warp_reduce_sum(tmp); | |
if (block_size > WARP_SIZE) { | |
__shared__ float s_sum[32]; | |
int warp_id = threadIdx.x / WARP_SIZE; | |
int lane_id = threadIdx.x % WARP_SIZE; | |
if (lane_id == 0) { | |
s_sum[warp_id] = tmp; | |
} | |
__syncthreads(); | |
tmp = s_sum[lane_id]; | |
tmp = warp_reduce_sum(tmp); | |
} | |
const float mean = tmp / ncols; | |
const float scale = rsqrtf(mean + eps); | |
for (int col = tid; col < ncols; col += block_size) { | |
dst[row*ncols + col] = scale * x[row*ncols + col]; | |
} | |
} | |
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { | |
GGML_ASSERT(ncols % WARP_SIZE == 0); | |
if (ncols < 1024) { | |
const dim3 block_dims(WARP_SIZE, 1, 1); | |
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps); | |
} else { | |
const dim3 block_dims(1024, 1, 1); | |
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps); | |
} | |
} | |
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) { | |
static const float eps = 1e-6f; | |
if (group_size < 1024) { | |
const dim3 block_dims(WARP_SIZE, 1, 1); | |
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps); | |
} else { | |
const dim3 block_dims(1024, 1, 1); | |
group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps); | |
} | |
} | |
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { | |
GGML_ASSERT(ncols % WARP_SIZE == 0); | |
if (ncols < 1024) { | |
const dim3 block_dims(WARP_SIZE, 1, 1); | |
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps); | |
} else { | |
const dim3 block_dims(1024, 1, 1); | |
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps); | |
} | |
} | |
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
const ggml_tensor * src0 = dst->src[0]; | |
const float * src0_d = (const float *)src0->data; | |
float * dst_d = (float *)dst->data; | |
cudaStream_t stream = ctx.stream(); | |
GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t nrows = ggml_nrows(src0); | |
float eps; | |
memcpy(&eps, dst->op_params, sizeof(float)); | |
norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream); | |
} | |
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
const ggml_tensor * src0 = dst->src[0]; | |
const float * src0_d = (const float *)src0->data; | |
float * dst_d = (float *)dst->data; | |
cudaStream_t stream = ctx.stream(); | |
GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
int num_groups = dst->op_params[0]; | |
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); | |
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream); | |
} | |
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
const ggml_tensor * src0 = dst->src[0]; | |
const float * src0_d = (const float *)src0->data; | |
float * dst_d = (float *)dst->data; | |
cudaStream_t stream = ctx.stream(); | |
GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t nrows = ggml_nrows(src0); | |
float eps; | |
memcpy(&eps, dst->op_params, sizeof(float)); | |
rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream); | |
} | |