Spaces:
Runtime error
Runtime error
#include "softmax.cuh" | |
template <typename T> | |
static __device__ __forceinline__ float t2f32(T val) { | |
return (float) val; | |
} | |
template <> | |
__device__ float __forceinline__ t2f32<half>(half val) { | |
return __half2float(val); | |
} | |
template <bool vals_smem, int ncols_template, int block_size_template, typename T> | |
static __global__ void soft_max_f32(const float * x, const T * mask, const T * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) { | |
const int ncols = ncols_template == 0 ? ncols_par : ncols_template; | |
const int tid = threadIdx.x; | |
const int rowx = blockIdx.x; | |
const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension | |
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template; | |
const int warp_id = threadIdx.x / WARP_SIZE; | |
const int lane_id = threadIdx.x % WARP_SIZE; | |
float slope = 0.0f; | |
// ALiBi | |
if (max_bias > 0.0f) { | |
const int h = rowx/nrows_y; // head index | |
const float base = h < n_head_log2 ? m0 : m1; | |
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; | |
slope = powf(base, exp); | |
} | |
extern __shared__ float data_soft_max_f32[]; | |
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication | |
// shared memory buffer to cache values between iterations: | |
float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + (int64_t)rowx*ncols; | |
float max_val = -INFINITY; | |
#pragma unroll | |
for (int col0 = 0; col0 < ncols; col0 += block_size) { | |
const int col = col0 + tid; | |
if (ncols_template == 0 && col >= ncols) { | |
break; | |
} | |
const int64_t ix = (int64_t)rowx*ncols + col; | |
const int64_t iy = (int64_t)rowy*ncols + col; | |
const float val = x[ix]*scale + (mask ? t2f32(mask[iy]) : 0.0f) + (pos ? slope*t2f32(pos[col]) : 0.0f); | |
vals[col] = val; | |
max_val = max(max_val, val); | |
} | |
// find the max value in the block | |
max_val = warp_reduce_max(max_val); | |
if (block_size > WARP_SIZE) { | |
if (warp_id == 0) { | |
buf_iw[lane_id] = -INFINITY; | |
} | |
__syncthreads(); | |
if (lane_id == 0) { | |
buf_iw[warp_id] = max_val; | |
} | |
__syncthreads(); | |
max_val = buf_iw[lane_id]; | |
max_val = warp_reduce_max(max_val); | |
} | |
float tmp = 0.0f; // partial sum | |
#pragma unroll | |
for (int col0 = 0; col0 < ncols; col0 += block_size) { | |
const int col = col0 + tid; | |
if (ncols_template == 0 && col >= ncols) { | |
break; | |
} | |
const float val = expf(vals[col] - max_val); | |
tmp += val; | |
vals[col] = val; | |
} | |
// find the sum of exps in the block | |
tmp = warp_reduce_sum(tmp); | |
if (block_size > WARP_SIZE) { | |
__syncthreads(); | |
if (warp_id == 0) { | |
buf_iw[lane_id] = 0.0f; | |
} | |
__syncthreads(); | |
if (lane_id == 0) { | |
buf_iw[warp_id] = tmp; | |
} | |
__syncthreads(); | |
tmp = buf_iw[lane_id]; | |
tmp = warp_reduce_sum(tmp); | |
} | |
const float inv_sum = 1.0f / tmp; | |
#pragma unroll | |
for (int col0 = 0; col0 < ncols; col0 += block_size) { | |
const int col = col0 + tid; | |
if (ncols_template == 0 && col >= ncols) { | |
return; | |
} | |
const int64_t idst = (int64_t)rowx*ncols + col; | |
dst[idst] = vals[col] * inv_sum; | |
} | |
} | |
template<typename T> | |
static void soft_max_f32_cuda(const float * x, const T * mask, const T * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) { | |
int nth = WARP_SIZE; | |
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2; | |
const dim3 block_dims(nth, 1, 1); | |
const dim3 block_nums(nrows_x, 1, 1); | |
const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float); | |
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted."); | |
const uint32_t n_head_kv = nrows_x/nrows_y; | |
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); | |
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); | |
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); | |
if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) { | |
switch (ncols_x) { | |
case 32: | |
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); | |
break; | |
case 64: | |
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); | |
break; | |
case 128: | |
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); | |
break; | |
case 256: | |
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); | |
break; | |
case 512: | |
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); | |
break; | |
case 1024: | |
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); | |
break; | |
case 2048: | |
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); | |
break; | |
case 4096: | |
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); | |
break; | |
default: | |
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); | |
break; | |
} | |
} else { | |
const size_t shmem_low = WARP_SIZE*sizeof(float); | |
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); | |
} | |
} | |
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
const ggml_tensor * src0 = dst->src[0]; | |
const ggml_tensor * src1 = dst->src[1]; | |
const ggml_tensor * src2 = dst->src[2]; | |
const float * src0_d = (const float *)src0->data; | |
const void * src1_d = src1 ? (const void *)src1->data : nullptr; | |
float * dst_d = (float *)dst->data; | |
cudaStream_t stream = ctx.stream(); | |
GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional | |
GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F16 || src2->type == GGML_TYPE_F32); // src2 contains positions and it is optional | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t nrows_x = ggml_nrows(src0); | |
const int64_t nrows_y = src0->ne[1]; | |
float scale = 1.0f; | |
float max_bias = 0.0f; | |
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); | |
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); | |
// positions tensor | |
void * src2_d = nullptr; | |
const bool use_src2 = src2 != nullptr; | |
if (use_src2) { | |
src2_d = (void *)src2->data; | |
} | |
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16); | |
if (use_f16) { | |
const half * src1_dd = (const half *)src1_d; | |
const half * src2_dd = (const half *)src2_d; | |
soft_max_f32_cuda(src0_d, src1_dd, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream); | |
} else { | |
const float * src1_dd = (const float *)src1_d; | |
const float * src2_dd = (const float *)src2_d; | |
soft_max_f32_cuda(src0_d, src1_dd, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream); | |
} | |
} | |