Spaces:
Runtime error
Runtime error
BioMistral_gradio
/
llama-cpp-python
/vendor
/llama.cpp
/kompute
/docs
/overview
/python-examples.rst
Python Examples | |
======== | |
This section contains simple and advanced examples using the Python Kompute class. For an overview of the module check `Python Package Overview <python-package.html>`_, for a deep dive into functions check the `Python Class Reference Section <python-reference.html>`_. | |
You will be able to run the examples below by installing the dependencies in `python/test/requirements-dev.txt` | |
Python Example (Simple) | |
^^^^^ | |
Then you can interact with it from your interpreter. Below is the same sample as above "Your First Kompute (Simple Version)" but in Python: | |
.. code-block:: python | |
:linenos: | |
from kp import Manager, Tensor, OpTensorSyncDevice, OpTensorSyncLocal, OpAlgoDispatch | |
from pyshader import python2shader, ivec3, f32, Array | |
mgr = Manager() | |
# Can be initialized with List[] or np.Array | |
tensor_in_a = mgr.tensor([2, 2, 2]) | |
tensor_in_b = mgr.tensor([1, 2, 3]) | |
tensor_out = mgr.tensor([0, 0, 0]) | |
sq = mgr.sequence() | |
sq.eval(OpTensorSyncDevice([tensor_in_a, tensor_in_b, tensor_out])) | |
# Define the function via PyShader or directly as glsl string or spirv bytes | |
def compute_shader_multiply(index=("input", "GlobalInvocationId", ivec3), | |
data1=("buffer", 0, Array(f32)), | |
data2=("buffer", 1, Array(f32)), | |
data3=("buffer", 2, Array(f32))): | |
i = index.x | |
data3[i] = data1[i] * data2[i] | |
algo = mgr.algorithm([tensor_in_a, tensor_in_b, tensor_out], compute_shader_multiply.to_spirv()) | |
# Run shader operation synchronously | |
sq.eval(OpAlgoDispatch(algo)) | |
sq.eval(OpTensorSyncLocal([tensor_out])) | |
assert tensor_out.data().tolist() == [2.0, 4.0, 6.0] | |
Python Example (Extended) | |
^^^^^ | |
Similarly you can find the same extended example as above: | |
.. code-block:: python | |
:linenos: | |
from kp import Manager, Tensor | |
import kp | |
from pyshader import python2shader, ivec3, f32, Array | |
mgr = Manager(0, [2]) | |
# Can be initialized with List[] or np.Array | |
tensor_in_a = mgr.tensor([2, 2, 2]) | |
tensor_in_b = mgr.tensor([1, 2, 3]) | |
tensor_out = mgr.tensor([0, 0, 0]) | |
seq = mgr.sequence() | |
seq.eval(kp.OpTensorSyncDevice([tensor_in_a, tensor_in_b, tensor_out])) | |
# Define the function via PyShader or directly as glsl string or spirv bytes | |
def compute_shader_multiply(index=("input", "GlobalInvocationId", ivec3), | |
data1=("buffer", 0, Array(f32)), | |
data2=("buffer", 1, Array(f32)), | |
data3=("buffer", 2, Array(f32))): | |
i = index.x | |
data3[i] = data1[i] * data2[i] | |
algo = mgr.algorithm([tensor_in_a, tensor_in_b, tensor_out], compute_shader_multiply.to_spirv()) | |
# Run shader operation asynchronously and then await | |
seq.eval_async(kp.OpAlgoDispatch(algo)) | |
seq.eval_await() | |
seq.record(kp.OpTensorSyncLocal([tensor_in_a])) | |
seq.record(kp.OpTensorSyncLocal([tensor_in_b])) | |
seq.record(kp.OpTensorSyncLocal([tensor_out])) | |
seq.eval() | |
assert tensor_out.data().tolist() == [2.0, 4.0, 6.0] | |
Kompute Operation Capabilities | |
^^^^^ | |
Handling multiple capabilites of processing can be done by compute shaders being loaded into separate sequences. The example below shows how this can be done: | |
.. code-block:: python | |
:linenos: | |
from kp import Manager | |
import kp | |
# We'll assume we have the shader data available | |
from my_spv_shader_data import mult_shader, sum_shader | |
mgr = Manager() | |
t1 = mgr.tensor([2,2,2]) | |
t2 = mgr.tensor([1,2,3]) | |
t3 = mgr.tensor([1,2,3]) | |
mgr.sequence().eval(kp.OpTensorSyncLocal([t1, t3])) | |
# Create multiple separate sequences | |
sq_mult = mgr.sequence() | |
sq_sum = mgr.sequence() | |
sq_sync = mgr.sequence() | |
sq_mult.record(kp.OpAlgoDispatch(mgr.algorithm([t1, t2, t3], add_shader)) | |
sq_sum.record(kp.OpAlgoDispatch(mgr.algorithm([t3, t2, t1], sum_shader)) | |
sq_sync.record(kp.OpTensorSyncLocal([t1, t3])) | |
# Run multiple iterations | |
for i in range(10): | |
sq_mult.eval() | |
sq_sum.eval() | |
sq_sync.eval() | |
print(t1.data(), t2.data(), t3.data()) | |
Machine Learning Logistic Regression Implementation | |
^^^^^^ | |
Similar to the logistic regression implementation in the C++ examples section, below you can find the Python implementation of the Logistic Regression algorithm. | |
.. code-block:: python | |
:linenos: | |
from kp import Manager, Tensor | |
import kp | |
from pyshader import python2shader, ivec3, f32, Array | |
def compute_shader( | |
index = ("input", "GlobalInvocationId", ivec3), | |
x_i = ("buffer", 0, Array(f32)), | |
x_j = ("buffer", 1, Array(f32)), | |
y = ("buffer", 2, Array(f32)), | |
w_in = ("buffer", 3, Array(f32)), | |
w_out_i = ("buffer", 4, Array(f32)), | |
w_out_j = ("buffer", 5, Array(f32)), | |
b_in = ("buffer", 6, Array(f32)), | |
b_out = ("buffer", 7, Array(f32)), | |
l_out = ("buffer", 8, Array(f32)), | |
M = ("buffer", 9, Array(f32))): | |
i = index.x | |
m = M[0] | |
w_curr = vec2(w_in[0], w_in[1]) | |
b_curr = b_in[0] | |
x_curr = vec2(x_i[i], x_j[i]) | |
y_curr = y[i] | |
z_dot = w_curr @ x_curr | |
z = z_dot + b_curr | |
y_hat = 1.0 / (1.0 + exp(-z)) | |
d_z = y_hat - y_curr | |
d_w = (1.0 / m) * x_curr * d_z | |
d_b = (1.0 / m) * d_z | |
loss = -((y_curr * log(y_hat)) + ((1.0 + y_curr) * log(1.0 - y_hat))) | |
w_out_i[i] = d_w.x | |
w_out_j[i] = d_w.y | |
b_out[i] = d_b | |
l_out[i] = loss | |
mgr = Manager() | |
# First we create input and ouput tensors for shader | |
tensor_x_i = mgr.tensor([0.0, 1.0, 1.0, 1.0, 1.0]) | |
tensor_x_j = mgr.tensor([0.0, 0.0, 0.0, 1.0, 1.0]) | |
tensor_y = mgr.tensor([0.0, 0.0, 0.0, 1.0, 1.0]) | |
tensor_w_in = mgr.tensor([0.001, 0.001]) | |
tensor_w_out_i = mgr.tensor([0.0, 0.0, 0.0, 0.0, 0.0]) | |
tensor_w_out_j = mgr.tensor([0.0, 0.0, 0.0, 0.0, 0.0]) | |
tensor_b_in = mgr.tensor([0.0]) | |
tensor_b_out = mgr.tensor([0.0, 0.0, 0.0, 0.0, 0.0]) | |
tensor_l_out = mgr.tensor([0.0, 0.0, 0.0, 0.0, 0.0]) | |
tensor_m = mgr.tensor([ 5.0 ]) | |
# We store them in an array for easier interaction | |
params = [tensor_x_i, tensor_x_j, tensor_y, tensor_w_in, tensor_w_out_i, | |
tensor_w_out_j, tensor_b_in, tensor_b_out, tensor_l_out, tensor_m] | |
sq.sequence().eval(kp.OpTensorSyncDevice(params)) | |
# Record commands for efficient evaluation | |
sq = mgr.sequence() | |
sq.record(kp.OpTensorSyncDevice([tensor_w_in, tensor_b_in])) | |
sq.record(kp.OpAlgoDispatch(mgr.algorithm(params, compute_shader.to_spirv()))) | |
sq.record(kp.OpTensorSyncLocal([tensor_w_out_i, tensor_w_out_j, tensor_b_out, tensor_l_out])) | |
ITERATIONS = 100 | |
learning_rate = 0.1 | |
# Perform machine learning training and inference across all input X and Y | |
for i_iter in range(ITERATIONS): | |
sq.eval() | |
# Calculate the parameters based on the respective derivatives calculated | |
w_in_i_val = tensor_w_in.data()[0] | |
w_in_j_val = tensor_w_in.data()[1] | |
b_in_val = tensor_b_in.data()[0] | |
for j_iter in range(tensor_b_out.size()): | |
w_in_i_val -= learning_rate * tensor_w_out_i.data()[j_iter] | |
w_in_j_val -= learning_rate * tensor_w_out_j.data()[j_iter] | |
b_in_val -= learning_rate * tensor_b_out.data()[j_iter] | |
# Update the parameters to process inference again | |
tensor_w_in.set_data([w_in_i_val, w_in_j_val]) | |
tensor_b_in.set_data([b_in_val]) | |
assert tensor_w_in.data()[0] < 0.01 | |
assert tensor_w_in.data()[0] > 0.0 | |
assert tensor_w_in.data()[1] > 1.5 | |
assert tensor_b_in.data()[0] < 0.7 | |
# Print outputs | |
print(tensor_w_in.data()) | |
print(tensor_b_in.data()) | |