aelitta's picture
Upload folder using huggingface_hub
4bdb245 verified
// SPDX-License-Identifier: Apache-2.0
#include "gtest/gtest.h"
#include "kompute/Kompute.hpp"
#include "kompute/logger/Logger.hpp"
#include "test_logistic_regression_shader.hpp"
TEST(TestLogisticRegression, TestMainLogisticRegression)
{
uint32_t ITERATIONS = 100;
float learningRate = 0.1;
{
kp::Manager mgr;
std::shared_ptr<kp::TensorT<float>> xI = mgr.tensor({ 0, 1, 1, 1, 1 });
std::shared_ptr<kp::TensorT<float>> xJ = mgr.tensor({ 0, 0, 0, 1, 1 });
std::shared_ptr<kp::TensorT<float>> y = mgr.tensor({ 0, 0, 0, 1, 1 });
std::shared_ptr<kp::TensorT<float>> wIn = mgr.tensor({ 0.001, 0.001 });
std::shared_ptr<kp::TensorT<float>> wOutI =
mgr.tensor({ 0, 0, 0, 0, 0 });
std::shared_ptr<kp::TensorT<float>> wOutJ =
mgr.tensor({ 0, 0, 0, 0, 0 });
std::shared_ptr<kp::TensorT<float>> bIn = mgr.tensor({ 0 });
std::shared_ptr<kp::TensorT<float>> bOut =
mgr.tensor({ 0, 0, 0, 0, 0 });
std::shared_ptr<kp::TensorT<float>> lOut =
mgr.tensor({ 0, 0, 0, 0, 0 });
std::vector<std::shared_ptr<kp::Tensor>> params = { xI, xJ, y,
wIn, wOutI, wOutJ,
bIn, bOut, lOut };
mgr.sequence()->eval<kp::OpTensorSyncDevice>(params);
std::vector<uint32_t> spirv2{ 0x1, 0x2 };
std::vector<uint32_t> spirv(
kp::TEST_LOGISTIC_REGRESSION_SHADER_COMP_SPV.begin(),
kp::TEST_LOGISTIC_REGRESSION_SHADER_COMP_SPV.end());
std::shared_ptr<kp::Algorithm> algorithm = mgr.algorithm(
params, spirv, kp::Workgroup({ 5 }), std::vector<float>({ 5.0 }));
std::shared_ptr<kp::Sequence> sq =
mgr.sequence()
->record<kp::OpTensorSyncDevice>({ wIn, bIn })
->record<kp::OpAlgoDispatch>(algorithm)
->record<kp::OpTensorSyncLocal>({ wOutI, wOutJ, bOut, lOut });
// Iterate across all expected iterations
for (size_t i = 0; i < ITERATIONS; i++) {
sq->eval();
for (size_t j = 0; j < bOut->size(); j++) {
wIn->data()[0] -= learningRate * wOutI->data()[j];
wIn->data()[1] -= learningRate * wOutJ->data()[j];
bIn->data()[0] -= learningRate * bOut->data()[j];
}
}
// Based on the inputs the outputs should be at least:
// * wi < 0.01
// * wj > 1.0
// * b < 0
// TODO: Add EXPECT_DOUBLE_EQ instead
EXPECT_LT(wIn->data()[0], 0.01);
EXPECT_GT(wIn->data()[1], 1.0);
EXPECT_LT(bIn->data()[0], 0.0);
KP_LOG_WARN("Result wIn i: {}, wIn j: {}, bIn: {}",
wIn->data()[0],
wIn->data()[1],
bIn->data()[0]);
}
}
TEST(TestLogisticRegression, TestMainLogisticRegressionManualCopy)
{
uint32_t ITERATIONS = 100;
float learningRate = 0.1;
{
kp::Manager mgr;
std::shared_ptr<kp::TensorT<float>> xI = mgr.tensor({ 0, 1, 1, 1, 1 });
std::shared_ptr<kp::TensorT<float>> xJ = mgr.tensor({ 0, 0, 0, 1, 1 });
std::shared_ptr<kp::TensorT<float>> y = mgr.tensor({ 0, 0, 0, 1, 1 });
std::shared_ptr<kp::TensorT<float>> wIn =
mgr.tensor({ 0.001, 0.001 }, kp::Tensor::TensorTypes::eHost);
std::shared_ptr<kp::TensorT<float>> wOutI =
mgr.tensor({ 0, 0, 0, 0, 0 });
std::shared_ptr<kp::TensorT<float>> wOutJ =
mgr.tensor({ 0, 0, 0, 0, 0 });
std::shared_ptr<kp::TensorT<float>> bIn =
mgr.tensor({ 0 }, kp::Tensor::TensorTypes::eHost);
std::shared_ptr<kp::TensorT<float>> bOut =
mgr.tensor({ 0, 0, 0, 0, 0 });
std::shared_ptr<kp::TensorT<float>> lOut =
mgr.tensor({ 0, 0, 0, 0, 0 });
std::vector<std::shared_ptr<kp::Tensor>> params = { xI, xJ, y,
wIn, wOutI, wOutJ,
bIn, bOut, lOut };
mgr.sequence()->record<kp::OpTensorSyncDevice>(params)->eval();
std::vector<uint32_t> spirv(
kp::TEST_LOGISTIC_REGRESSION_SHADER_COMP_SPV.begin(),
kp::TEST_LOGISTIC_REGRESSION_SHADER_COMP_SPV.end());
std::shared_ptr<kp::Algorithm> algorithm = mgr.algorithm(
params, spirv, kp::Workgroup(), std::vector<float>({ 5.0 }));
std::shared_ptr<kp::Sequence> sq =
mgr.sequence()
->record<kp::OpTensorSyncDevice>({ wIn, bIn })
->record<kp::OpAlgoDispatch>(algorithm)
->record<kp::OpTensorSyncLocal>({ wOutI, wOutJ, bOut, lOut });
// Iterate across all expected iterations
for (size_t i = 0; i < ITERATIONS; i++) {
sq->eval();
for (size_t j = 0; j < bOut->size(); j++) {
wIn->data()[0] -= learningRate * wOutI->data()[j];
wIn->data()[1] -= learningRate * wOutJ->data()[j];
bIn->data()[0] -= learningRate * bOut->data()[j];
}
}
// Based on the inputs the outputs should be at least:
// * wi < 0.01
// * wj > 1.0
// * b < 0
// TODO: Add EXPECT_DOUBLE_EQ instead
EXPECT_LT(wIn->data()[0], 0.01);
EXPECT_GT(wIn->data()[1], 1.0);
EXPECT_LT(bIn->data()[0], 0.0);
KP_LOG_WARN("Result wIn i: {}, wIn j: {}, bIn: {}",
wIn->data()[0],
wIn->data()[1],
bIn->data()[0]);
}
}