Spaces:
Runtime error
Runtime error
static void dump(const llama_token_data_array * candidates) { | |
for (size_t i = 0; i < candidates->size; i++) { | |
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit); | |
} | |
} | |
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) { | |
const size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
const float logit = logf(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
llama_sample_softmax(nullptr, &candidates_p); | |
DUMP(&candidates_p); | |
llama_sample_top_k(nullptr, &candidates_p, k, 1); | |
DUMP(&candidates_p); | |
GGML_ASSERT(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5); | |
} | |
} | |
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) { | |
const size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
const float logit = logf(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
llama_sample_softmax(nullptr, &candidates_p); | |
DUMP(&candidates_p); | |
llama_sample_top_p(nullptr, &candidates_p, p, 1); | |
DUMP(&candidates_p); | |
GGML_ASSERT(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); | |
} | |
} | |
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) { | |
const size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
const float logit = logf(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
DUMP(&candidates_p); | |
llama_sample_tail_free(nullptr, &candidates_p, z, 1); | |
DUMP(&candidates_p); | |
GGML_ASSERT(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); | |
} | |
} | |
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) { | |
const size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
const float logit = logf(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
DUMP(&candidates_p); | |
llama_sample_min_p(nullptr, &candidates_p, p, 1); | |
DUMP(&candidates_p); | |
llama_sample_softmax(nullptr, &candidates_p); | |
GGML_ASSERT(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); | |
} | |
} | |
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) { | |
const size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
const float logit = logf(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
DUMP(&candidates_p); | |
llama_sample_typical(nullptr, &candidates_p, p, 1); | |
DUMP(&candidates_p); | |
GGML_ASSERT(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); | |
} | |
} | |
static void test_repetition_penalties( | |
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens, | |
const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence | |
) { | |
GGML_ASSERT(probs.size() == expected_probs.size()); | |
const size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
const float logit = logf(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
llama_sample_softmax(nullptr, &candidates_p); | |
DUMP(&candidates_p); | |
llama_sample_repetition_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence); | |
llama_sample_softmax(nullptr, &candidates_p); | |
DUMP(&candidates_p); | |
GGML_ASSERT(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); | |
} | |
} | |
static void test_sampler_queue( | |
const size_t n_vocab, const std::string samplers_sequence, const int top_k, const float top_p, const float min_p | |
) { | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
const float logit = logf(token_id); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
llama_token min_token_id = 0; | |
const llama_token max_token_id = n_vocab-1; | |
for (auto s : samplers_sequence) { | |
switch (s){ | |
case 'k': llama_sample_top_k (nullptr, &candidates_p, top_k, 1); break; | |
case 'f': GGML_ASSERT(false && "tail_free test not implemented"); break; | |
case 'y': GGML_ASSERT(false && "typical test not implemented"); break; | |
case 'p': llama_sample_top_p (nullptr, &candidates_p, top_p, 1); break; | |
case 'm': llama_sample_min_p (nullptr, &candidates_p, min_p, 1); break; | |
case 't': GGML_ASSERT(false && "temperature test not implemented"); break; | |
default : GGML_ASSERT(false && "Unknown sampler"); break; | |
} | |
llama_sample_softmax(nullptr, &candidates_p); // make sure tokens are sorted for tests | |
const int size = candidates_p.size; | |
if (s == 'k') { | |
const int expected_size = std::min(size, top_k); | |
min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k)); | |
GGML_ASSERT(size == expected_size); | |
GGML_ASSERT(candidates_p.data[0].id == max_token_id); | |
GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id); | |
} else if (s == 'p') { | |
const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2; | |
const int softmax_numerator_target = ceilf(top_p * softmax_divisor); | |
min_token_id = n_vocab; | |
int expected_size = 0; | |
int cumsum = 0; | |
do { // do-while because always at least one token is sampled | |
min_token_id--; | |
expected_size++; | |
cumsum += min_token_id; | |
} while (cumsum < softmax_numerator_target); | |
// token 0 has p == 0, need special consideration for cumsum because top_p immediately returns | |
if (min_token_id == 1) { | |
min_token_id--; | |
expected_size += 1; | |
} | |
GGML_ASSERT(size == expected_size); | |
GGML_ASSERT(candidates_p.data[0].id == max_token_id); | |
GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id); | |
} else if (s == 'm') { | |
int expected_size = ceilf((1.0f-min_p) * n_vocab); | |
expected_size = std::max(expected_size, 1); | |
expected_size = std::min(expected_size, size); | |
min_token_id = floorf(min_p * n_vocab); | |
min_token_id = std::max(min_token_id, 1); | |
min_token_id = std::max(min_token_id, (llama_token)(n_vocab - size)); | |
min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1)); | |
GGML_ASSERT(size == expected_size); | |
GGML_ASSERT(candidates_p.data[0].id == max_token_id); | |
GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id); | |
} else { | |
GGML_ASSERT(false); | |
} | |
} | |
printf("Sampler queue %3s OK with n_vocab=%05ld top_k=%05d top_p=%f min_p=%f\n", | |
samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p); | |
} | |
int main(void) { | |
ggml_time_init(); | |
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1); | |
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3); | |
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4); | |
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0); | |
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0); | |
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f); | |
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f); | |
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1); | |
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f); | |
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f); | |
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.26f); | |
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.49f); | |
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.51f); | |
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.74f); | |
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f); | |
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f); | |
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f); | |
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f); | |
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f); | |
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f); | |
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f); | |
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f); | |
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f); | |
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f); | |
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f); | |
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f); | |
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f); | |
test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f); | |
test_sampler_queue(10000, "k", 1, 1.0f, 1.0f); | |
test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f); | |
test_sampler_queue(10000, "p", 10000, 0.0f, 1.0f); | |
test_sampler_queue(10000, "m", 10000, 1.0f, 1.0f); | |
test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12); | |
test_sampler_queue(10000, "k", 100, 1.0000f, 1.0f); | |
test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f); | |
test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f); | |
test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f); | |
test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f); | |
test_sampler_queue(10000, "kp", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "km", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "pk", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "pm", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "mk", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "mp", 100, 0.8f, 9997.9f/9999.0f); | |
test_sampler_queue(10000, "mp", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "kpm", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "kmp", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "pkm", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "pmk", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "mkp", 100, 0.8f, 0.1f); | |
test_sampler_queue(10000, "mpk", 100, 0.8f, 0.1f); | |
printf("OK\n"); | |
return 0; | |
} | |