Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import pytesseract
|
|
6 |
import pandas as pd
|
7 |
import plotly.express as px
|
8 |
|
9 |
-
# ✅ Step 1: Emoji
|
10 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
11 |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
|
12 |
emoji_model = AutoModelForCausalLM.from_pretrained(
|
@@ -16,7 +16,7 @@ emoji_model = AutoModelForCausalLM.from_pretrained(
|
|
16 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
emoji_model.eval()
|
18 |
|
19 |
-
# ✅ Step 2:
|
20 |
model_options = {
|
21 |
"Toxic-BERT": "unitary/toxic-bert",
|
22 |
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
|
@@ -26,18 +26,23 @@ model_options = {
|
|
26 |
# ✅ 页面配置
|
27 |
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
|
28 |
|
29 |
-
# ✅
|
30 |
with st.sidebar:
|
31 |
st.header("🧠 Configuration")
|
32 |
selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
|
33 |
selected_model_id = model_options[selected_model]
|
34 |
-
classifier = pipeline(
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# 初始化历史记录
|
37 |
if "history" not in st.session_state:
|
38 |
st.session_state.history = []
|
39 |
|
40 |
-
#
|
41 |
def classify_emoji_text(text: str):
|
42 |
prompt = f"输入:{text}\n输出:"
|
43 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
@@ -46,27 +51,63 @@ def classify_emoji_text(text: str):
|
|
46 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
47 |
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
st.session_state.history.append({
|
58 |
-
"text": text,
|
59 |
"translated": translated_text,
|
60 |
"label": label,
|
61 |
"score": score,
|
62 |
-
"reason": reasoning
|
|
|
63 |
})
|
64 |
-
return translated_text, label, score, reasoning
|
65 |
|
66 |
-
#
|
67 |
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
|
68 |
|
69 |
-
#
|
70 |
st.subheader("1. 输入与分类")
|
71 |
default_text = "你是🐷"
|
72 |
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
@@ -74,7 +115,7 @@ text = st.text_area("Enter sentence with emojis:", value=default_text, height=15
|
|
74 |
if st.button("🚦 Analyze Text"):
|
75 |
with st.spinner("🔍 Processing..."):
|
76 |
try:
|
77 |
-
translated, label, score, reason = classify_emoji_text(text)
|
78 |
st.markdown("**Translated sentence:**")
|
79 |
st.code(translated, language="text")
|
80 |
st.markdown(f"**Prediction:** {label}")
|
@@ -84,7 +125,7 @@ if st.button("🚦 Analyze Text"):
|
|
84 |
except Exception as e:
|
85 |
st.error(f"❌ An error occurred:\n{e}")
|
86 |
|
87 |
-
#
|
88 |
st.markdown("---")
|
89 |
st.subheader("2. 图片 OCR & 分类")
|
90 |
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
|
@@ -96,7 +137,7 @@ if uploaded_file:
|
|
96 |
if ocr_text:
|
97 |
st.markdown("**Extracted Text:**")
|
98 |
st.code(ocr_text)
|
99 |
-
translated, label, score, reason = classify_emoji_text(ocr_text)
|
100 |
st.markdown("**Translated sentence:**")
|
101 |
st.code(translated, language="text")
|
102 |
st.markdown(f"**Prediction:** {label}")
|
@@ -110,7 +151,7 @@ if uploaded_file:
|
|
110 |
st.markdown("---")
|
111 |
st.subheader("3. Violation Analysis Dashboard")
|
112 |
if st.session_state.history:
|
113 |
-
#
|
114 |
df = pd.DataFrame(st.session_state.history)
|
115 |
st.markdown("### 🧾 Offensive Terms & Suggestions")
|
116 |
for item in st.session_state.history:
|
@@ -119,50 +160,21 @@ if st.session_state.history:
|
|
119 |
st.markdown(f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
|
120 |
st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
|
121 |
|
122 |
-
#
|
|
|
123 |
radar_df = pd.DataFrame({
|
124 |
-
"Category":
|
125 |
-
"Score":
|
126 |
})
|
127 |
-
radar_fig = px.line_polar(
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
st.plotly_chart(radar_fig)
|
130 |
-
|
131 |
-
# —— 新增:单词级冒犯性相关性分析 —— #
|
132 |
-
st.markdown("### 🧬 Word-level Offensive Correlation")
|
133 |
-
|
134 |
-
# 取最近一次翻译文本,按空格拆分单词
|
135 |
-
last_translated_text = st.session_state.history[-1]["translated"]
|
136 |
-
words = last_translated_text.split()
|
137 |
-
|
138 |
-
# 对每个单词进行分类并收集分数
|
139 |
-
word_scores = []
|
140 |
-
for word in words:
|
141 |
-
try:
|
142 |
-
res = classifier(word)[0]
|
143 |
-
word_scores.append({
|
144 |
-
"Word": word,
|
145 |
-
"Label": res["label"],
|
146 |
-
"Score": res["score"]
|
147 |
-
})
|
148 |
-
except Exception:
|
149 |
-
continue
|
150 |
-
|
151 |
-
if word_scores:
|
152 |
-
word_df = pd.DataFrame(word_scores)
|
153 |
-
word_df = word_df.sort_values(by="Score", ascending=False).reset_index(drop=True)
|
154 |
-
|
155 |
-
max_display = 5
|
156 |
-
# Streamlit 1.22+ 支持 st.toggle,若版本不支持可改用 checkbox
|
157 |
-
show_more = st.toggle("Show more words", value=False)
|
158 |
-
|
159 |
-
display_df = word_df if show_more else word_df.head(max_display)
|
160 |
-
# 隐藏边框并渲染 HTML 表格
|
161 |
-
st.markdown(
|
162 |
-
display_df.to_html(index=False, border=0),
|
163 |
-
unsafe_allow_html=True
|
164 |
-
)
|
165 |
-
else:
|
166 |
-
st.info("❕ No word-level analysis available.")
|
167 |
else:
|
168 |
st.info("⚠️ No classification data available yet.")
|
|
|
6 |
import pandas as pd
|
7 |
import plotly.express as px
|
8 |
|
9 |
+
# ✅ Step 1: Emoji 翻译模型
|
10 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
11 |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
|
12 |
emoji_model = AutoModelForCausalLM.from_pretrained(
|
|
|
16 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
emoji_model.eval()
|
18 |
|
19 |
+
# ✅ Step 2: 冒犯性文本识别模型
|
20 |
model_options = {
|
21 |
"Toxic-BERT": "unitary/toxic-bert",
|
22 |
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
|
|
|
26 |
# ✅ 页面配置
|
27 |
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
|
28 |
|
29 |
+
# ✅ 侧边栏配置
|
30 |
with st.sidebar:
|
31 |
st.header("🧠 Configuration")
|
32 |
selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
|
33 |
selected_model_id = model_options[selected_model]
|
34 |
+
classifier = pipeline(
|
35 |
+
"text-classification",
|
36 |
+
model=selected_model_id,
|
37 |
+
device=0 if torch.cuda.is_available() else -1,
|
38 |
+
return_all_scores=True
|
39 |
+
)
|
40 |
|
41 |
# 初始化历史记录
|
42 |
if "history" not in st.session_state:
|
43 |
st.session_state.history = []
|
44 |
|
45 |
+
# 分类函数(优化版)
|
46 |
def classify_emoji_text(text: str):
|
47 |
prompt = f"输入:{text}\n输出:"
|
48 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
|
|
51 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
52 |
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
|
53 |
|
54 |
+
# 获取所有分类结果
|
55 |
+
all_results = classifier(translated_text)
|
56 |
+
|
57 |
+
# 雷达图类别映射规则
|
58 |
+
radar_categories = ["Insult", "Abuse", "Discrimination", "Hate Speech", "Vulgarity"]
|
59 |
+
radar_scores = {category: 0.0 for category in radar_categories}
|
60 |
+
|
61 |
+
# 模型特定映射规则
|
62 |
+
model_mappings = {
|
63 |
+
"Toxic-BERT": {
|
64 |
+
"toxic": "Vulgarity",
|
65 |
+
"severe_toxic": "Abuse",
|
66 |
+
"obscene": "Vulgarity",
|
67 |
+
"threat": "Hate Speech",
|
68 |
+
"insult": "Insult",
|
69 |
+
"identity_hate": "Discrimination"
|
70 |
+
},
|
71 |
+
"Roberta Offensive": {
|
72 |
+
"offensive": ["Insult", "Abuse", "Vulgarity"]
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
# 动态生成雷达分数
|
77 |
+
for result in all_results:
|
78 |
+
label = result['label']
|
79 |
+
score = result['score']
|
80 |
+
|
81 |
+
if selected_model == "Toxic-BERT":
|
82 |
+
mapped_category = model_mappings["Toxic-BERT"].get(label)
|
83 |
+
if mapped_category and score > radar_scores[mapped_category]:
|
84 |
+
radar_scores[mapped_category] = score
|
85 |
+
elif selected_model == "Roberta Offensive" and label == "offensive":
|
86 |
+
for category in model_mappings["Roberta Offensive"]["offensive"]:
|
87 |
+
if score > radar_scores[category]:
|
88 |
+
radar_scores[category] = score
|
89 |
+
|
90 |
+
# 获取主要分类结果
|
91 |
+
primary_result = max(all_results, key=lambda x: x['score'])
|
92 |
+
label = primary_result["label"]
|
93 |
+
score = primary_result["score"]
|
94 |
+
reasoning = f"The sentence was flagged as '{label}' due to potentially offensive phrases. Consider replacing emotionally charged, ambiguous, or abusive terms."
|
95 |
+
|
96 |
+
# 存储到历史记录
|
97 |
st.session_state.history.append({
|
98 |
+
"text": text,
|
99 |
"translated": translated_text,
|
100 |
"label": label,
|
101 |
"score": score,
|
102 |
+
"reason": reasoning,
|
103 |
+
"radar_scores": radar_scores
|
104 |
})
|
105 |
+
return translated_text, label, score, reasoning, radar_scores
|
106 |
|
107 |
+
# 主界面
|
108 |
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
|
109 |
|
110 |
+
# 文本输入分析
|
111 |
st.subheader("1. 输入与分类")
|
112 |
default_text = "你是🐷"
|
113 |
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
|
|
115 |
if st.button("🚦 Analyze Text"):
|
116 |
with st.spinner("🔍 Processing..."):
|
117 |
try:
|
118 |
+
translated, label, score, reason, radar = classify_emoji_text(text)
|
119 |
st.markdown("**Translated sentence:**")
|
120 |
st.code(translated, language="text")
|
121 |
st.markdown(f"**Prediction:** {label}")
|
|
|
125 |
except Exception as e:
|
126 |
st.error(f"❌ An error occurred:\n{e}")
|
127 |
|
128 |
+
# 图片分析
|
129 |
st.markdown("---")
|
130 |
st.subheader("2. 图片 OCR & 分类")
|
131 |
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
|
|
|
137 |
if ocr_text:
|
138 |
st.markdown("**Extracted Text:**")
|
139 |
st.code(ocr_text)
|
140 |
+
translated, label, score, reason, radar = classify_emoji_text(ocr_text)
|
141 |
st.markdown("**Translated sentence:**")
|
142 |
st.code(translated, language="text")
|
143 |
st.markdown(f"**Prediction:** {label}")
|
|
|
151 |
st.markdown("---")
|
152 |
st.subheader("3. Violation Analysis Dashboard")
|
153 |
if st.session_state.history:
|
154 |
+
# 历史记录展示
|
155 |
df = pd.DataFrame(st.session_state.history)
|
156 |
st.markdown("### 🧾 Offensive Terms & Suggestions")
|
157 |
for item in st.session_state.history:
|
|
|
160 |
st.markdown(f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
|
161 |
st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
|
162 |
|
163 |
+
# 动态生成雷达图
|
164 |
+
latest_radar = st.session_state.history[-1]["radar_scores"]
|
165 |
radar_df = pd.DataFrame({
|
166 |
+
"Category": latest_radar.keys(),
|
167 |
+
"Score": latest_radar.values()
|
168 |
})
|
169 |
+
radar_fig = px.line_polar(
|
170 |
+
radar_df,
|
171 |
+
r='Score',
|
172 |
+
theta='Category',
|
173 |
+
line_close=True,
|
174 |
+
title="⚠️ Risk Radar by Category",
|
175 |
+
range_r=[0,1]
|
176 |
+
)
|
177 |
+
radar_fig.update_traces(fill='toself', line_color='red')
|
178 |
st.plotly_chart(radar_fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
else:
|
180 |
st.info("⚠️ No classification data available yet.")
|