Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,6 @@ from PIL import Image
|
|
5 |
import pytesseract
|
6 |
import pandas as pd
|
7 |
import plotly.express as px
|
8 |
-
import re
|
9 |
-
from collections import defaultdict
|
10 |
|
11 |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
12 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
@@ -39,74 +37,50 @@ with st.sidebar:
|
|
39 |
if "history" not in st.session_state:
|
40 |
st.session_state.history = []
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
"
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
classification = classifier(translated)[0]
|
70 |
-
label = classification["label"].lower()
|
71 |
-
score = classification["score"]
|
72 |
-
|
73 |
-
category = label_to_category.get(label, "Others")
|
74 |
-
radar_scores[category] += score
|
75 |
-
|
76 |
-
reasoning = f"'{element}' was flagged as '{label}' → '{category}' due to potential offensiveness."
|
77 |
-
results.append({
|
78 |
-
"text": element,
|
79 |
-
"translated": translated,
|
80 |
-
"label": label,
|
81 |
-
"category": category,
|
82 |
-
"score": score,
|
83 |
-
"reason": reasoning
|
84 |
-
})
|
85 |
-
|
86 |
-
st.session_state.history.extend(results)
|
87 |
-
return results, radar_scores
|
88 |
-
|
89 |
-
# 主页面
|
90 |
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
|
91 |
|
92 |
# 文本输入
|
93 |
st.subheader("1. 输入与分类")
|
94 |
-
default_text = "
|
95 |
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
96 |
|
97 |
if st.button("🚦 Analyze Text"):
|
98 |
with st.spinner("🔍 Processing..."):
|
99 |
try:
|
100 |
-
|
101 |
-
|
102 |
-
st.
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
st.markdown(f" - 🔧 **Reasoning:** {item['reason']}")
|
108 |
-
|
109 |
-
st.success("✅ Analysis complete!")
|
110 |
except Exception as e:
|
111 |
st.error(f"❌ An error occurred:\n{e}")
|
112 |
|
@@ -122,12 +96,13 @@ if uploaded_file:
|
|
122 |
if ocr_text:
|
123 |
st.markdown("**Extracted Text:**")
|
124 |
st.code(ocr_text)
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
131 |
else:
|
132 |
st.info("⚠️ No text detected in the image.")
|
133 |
|
@@ -135,24 +110,59 @@ if uploaded_file:
|
|
135 |
st.markdown("---")
|
136 |
st.subheader("3. Violation Analysis Dashboard")
|
137 |
if st.session_state.history:
|
|
|
138 |
df = pd.DataFrame(st.session_state.history)
|
139 |
-
|
140 |
-
st.markdown("### 🧾 Offense History Summary")
|
141 |
for item in st.session_state.history:
|
142 |
-
st.markdown(f"- **Input:** {item['text']}")
|
143 |
-
st.markdown(f" -
|
144 |
-
st.markdown(f" -
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
"Category":
|
150 |
-
"Score": [
|
151 |
-
|
152 |
-
}
|
153 |
-
radar_df = pd.DataFrame(radar_data)
|
154 |
radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
|
155 |
radar_fig.update_traces(line_color='black')
|
156 |
st.plotly_chart(radar_fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
else:
|
158 |
st.info("⚠️ No classification data available yet.")
|
|
|
5 |
import pytesseract
|
6 |
import pandas as pd
|
7 |
import plotly.express as px
|
|
|
|
|
8 |
|
9 |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
10 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
|
|
37 |
if "history" not in st.session_state:
|
38 |
st.session_state.history = []
|
39 |
|
40 |
+
# 分类函数
|
41 |
+
def classify_emoji_text(text: str):
|
42 |
+
prompt = f"输入:{text}\n输出:"
|
43 |
+
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
44 |
+
with torch.no_grad():
|
45 |
+
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
|
46 |
+
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
47 |
+
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
|
48 |
+
|
49 |
+
result = classifier(translated_text)[0]
|
50 |
+
label = result["label"]
|
51 |
+
score = result["score"]
|
52 |
+
reasoning = (
|
53 |
+
f"The sentence was flagged as '{label}' due to potentially offensive phrases. "
|
54 |
+
"Consider replacing emotionally charged, ambiguous, or abusive terms."
|
55 |
+
)
|
56 |
+
|
57 |
+
st.session_state.history.append({
|
58 |
+
"text": text,
|
59 |
+
"translated": translated_text,
|
60 |
+
"label": label,
|
61 |
+
"score": score,
|
62 |
+
"reason": reasoning
|
63 |
+
})
|
64 |
+
return translated_text, label, score, reasoning
|
65 |
+
|
66 |
+
# 主页面:输入与分析共存
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
|
68 |
|
69 |
# 文本输入
|
70 |
st.subheader("1. 输入与分类")
|
71 |
+
default_text = "你是🐷"
|
72 |
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
73 |
|
74 |
if st.button("🚦 Analyze Text"):
|
75 |
with st.spinner("🔍 Processing..."):
|
76 |
try:
|
77 |
+
translated, label, score, reason = classify_emoji_text(text)
|
78 |
+
st.markdown("**Translated sentence:**")
|
79 |
+
st.code(translated, language="text")
|
80 |
+
st.markdown(f"**Prediction:** {label}")
|
81 |
+
st.markdown(f"**Confidence Score:** {score:.2%}")
|
82 |
+
st.markdown("**Model Explanation:**")
|
83 |
+
st.info(reason)
|
|
|
|
|
|
|
84 |
except Exception as e:
|
85 |
st.error(f"❌ An error occurred:\n{e}")
|
86 |
|
|
|
96 |
if ocr_text:
|
97 |
st.markdown("**Extracted Text:**")
|
98 |
st.code(ocr_text)
|
99 |
+
translated, label, score, reason = classify_emoji_text(ocr_text)
|
100 |
+
st.markdown("**Translated sentence:**")
|
101 |
+
st.code(translated, language="text")
|
102 |
+
st.markdown(f"**Prediction:** {label}")
|
103 |
+
st.markdown(f"**Confidence Score:** {score:.2%}")
|
104 |
+
st.markdown("**Model Explanation:**")
|
105 |
+
st.info(reason)
|
106 |
else:
|
107 |
st.info("⚠️ No text detected in the image.")
|
108 |
|
|
|
110 |
st.markdown("---")
|
111 |
st.subheader("3. Violation Analysis Dashboard")
|
112 |
if st.session_state.history:
|
113 |
+
# 展示历史记录
|
114 |
df = pd.DataFrame(st.session_state.history)
|
115 |
+
st.markdown("### 🧾 Offensive Terms & Suggestions")
|
|
|
116 |
for item in st.session_state.history:
|
117 |
+
st.markdown(f"- 🔹 **Input:** {item['text']}")
|
118 |
+
st.markdown(f" - ✨ **Translated:** {item['translated']}")
|
119 |
+
st.markdown(f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
|
120 |
+
st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
|
121 |
+
|
122 |
+
# 雷达图
|
123 |
+
radar_df = pd.DataFrame({
|
124 |
+
"Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
|
125 |
+
"Score": [0.7,0.4,0.3,0.5,0.6]
|
126 |
+
})
|
|
|
|
|
127 |
radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
|
128 |
radar_fig.update_traces(line_color='black')
|
129 |
st.plotly_chart(radar_fig)
|
130 |
+
|
131 |
+
# —— 新增:单词级冒犯性相关性分析 —— #
|
132 |
+
st.markdown("### 🧬 Word-level Offensive Correlation")
|
133 |
+
|
134 |
+
# 取最近一次翻译文本,按空格拆分单词
|
135 |
+
last_translated_text = st.session_state.history[-1]["translated"]
|
136 |
+
words = last_translated_text.split()
|
137 |
+
|
138 |
+
# 对每个单词进行分类并收集分数
|
139 |
+
word_scores = []
|
140 |
+
for word in words:
|
141 |
+
try:
|
142 |
+
res = classifier(word)[0]
|
143 |
+
word_scores.append({
|
144 |
+
"Word": word,
|
145 |
+
"Label": res["label"],
|
146 |
+
"Score": res["score"]
|
147 |
+
})
|
148 |
+
except Exception:
|
149 |
+
continue
|
150 |
+
|
151 |
+
if word_scores:
|
152 |
+
word_df = pd.DataFrame(word_scores)
|
153 |
+
word_df = word_df.sort_values(by="Score", ascending=False).reset_index(drop=True)
|
154 |
+
|
155 |
+
max_display = 5
|
156 |
+
# Streamlit 1.22+ 支持 st.toggle,若版本不支持可改用 checkbox
|
157 |
+
show_more = st.toggle("Show more words", value=False)
|
158 |
+
|
159 |
+
display_df = word_df if show_more else word_df.head(max_display)
|
160 |
+
# 隐藏边框并渲染 HTML 表格
|
161 |
+
st.markdown(
|
162 |
+
display_df.to_html(index=False, border=0),
|
163 |
+
unsafe_allow_html=True
|
164 |
+
)
|
165 |
+
else:
|
166 |
+
st.info("❕ No word-level analysis available.")
|
167 |
else:
|
168 |
st.info("⚠️ No classification data available yet.")
|