Spaces:
Running
Running
File size: 27,945 Bytes
5cbef81 a32bad6 53be893 17e9c2f 6c4b1a0 17e9c2f 53be893 6c4b1a0 5cbef81 f0336d9 4f95bff 4ccc7b2 53be893 c5073ea 4ccc7b2 036f995 5cbef81 53be893 4ccc7b2 53be893 4ccc7b2 53be893 e474699 6c4b1a0 53be893 e474699 53be893 c5073ea 53be893 c5073ea 53be893 c5073ea 4f95bff f0336d9 4f95bff f0336d9 4f95bff f0336d9 4f95bff f0336d9 5cbef81 f0336d9 5cbef81 f0336d9 5cbef81 a7a5a3c 5cbef81 a7a5a3c 5cbef81 a7a5a3c f0336d9 5cbef81 a7a5a3c 5cbef81 a7a5a3c 5cbef81 53be893 c5073ea 53be893 5cbef81 4ccc7b2 5cbef81 ef28c77 53be893 5cbef81 53be893 17e9c2f 5cbef81 17e9c2f 5cbef81 17e9c2f 5cbef81 17e9c2f 5cbef81 17e9c2f 6c4b1a0 17e9c2f 5cbef81 17e9c2f 10a1a49 17e9c2f 10a1a49 17e9c2f 10a1a49 17e9c2f 10a1a49 17e9c2f 5cbef81 17e9c2f 10a1a49 17e9c2f 10a1a49 5cbef81 17e9c2f 10a1a49 17e9c2f 5cbef81 17e9c2f 5cbef81 17e9c2f 10a1a49 17e9c2f 10a1a49 17e9c2f 5cbef81 17e9c2f 10a1a49 17e9c2f 10a1a49 5cbef81 17e9c2f 10a1a49 5cbef81 17e9c2f 5cbef81 17e9c2f 10a1a49 17e9c2f 5cbef81 17e9c2f 10a1a49 6c4b1a0 5cbef81 4f95bff e474699 17e9c2f 6c4b1a0 17e9c2f 6c4b1a0 17e9c2f 6c4b1a0 17e9c2f 6c4b1a0 17e9c2f 53be893 4f95bff 5ac66ed 4f95bff 8acee36 6c4b1a0 53be893 6c4b1a0 4f95bff a7a5a3c f0336d9 4f95bff 53be893 6c4b1a0 53be893 6c4b1a0 5cbef81 4f95bff 5cbef81 53be893 17e9c2f 53be893 a7a5a3c 53be893 5cbef81 10a1a49 a7a5a3c 10a1a49 5cbef81 10a1a49 a7a5a3c 10a1a49 5cbef81 10a1a49 a7a5a3c 5cbef81 10a1a49 a7a5a3c 10a1a49 5cbef81 10a1a49 a7a5a3c 10a1a49 17e9c2f a7a5a3c 10a1a49 17e9c2f a7a5a3c 10a1a49 53be893 6c4b1a0 4f95bff 6c4b1a0 a7a5a3c 6c4b1a0 4f95bff 6c4b1a0 5cbef81 a7a5a3c 6c4b1a0 5cbef81 6c4b1a0 10a1a49 5cbef81 10a1a49 5cbef81 10a1a49 5cbef81 10a1a49 6c4b1a0 f0336d9 53be893 f0336d9 53be893 10a1a49 5cbef81 4f95bff 53be893 8acee36 4f95bff e474699 53be893 5cbef81 4f95bff 53be893 4f95bff 53be893 17e9c2f 5cbef81 17e9c2f 5cbef81 17e9c2f 5cbef81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
#!/usr/bin/env python
import os
import json
import logging
import sys
from fastapi import FastAPI, HTTPException, Request, Form
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from pydantic import BaseModel
from datetime import datetime
from datasets import Dataset, load_dataset, concatenate_datasets
import os
import logging
from urllib.parse import urlparse
import re # Import regex module
import html # Import html module for escaping
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError # For specific error handling
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Add Counter Configuration (as of May 3, 2025) ---
HF_REPO = "aetheris-ai/aisbom-usage-log" # User needs to create this private repo
HF_TOKEN = os.getenv("HF_TOKEN") # User must set this environment variable
# --- End Counter Configuration ---
# Define directories
templates_dir = "templates"
OUTPUT_DIR = "/tmp/aibom_output"
# Initialize templates
templates = Jinja2Templates(directory=templates_dir)
# Create app
app = FastAPI(title="AI SBOM Generator API")
# Ensure output directory exists
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Mount output directory as static files
app.mount("/output", StaticFiles(directory=OUTPUT_DIR), name="output")
# Status response model
class StatusResponse(BaseModel):
status: str
version: str
generator_version: str
# --- Model ID Validation and Normalization Helpers ---
# Regex for valid Hugging Face ID parts (alphanumeric, -, _, .)
# Allows owner/model format
HF_ID_REGEX = re.compile(r"^[a-zA-Z0-9\.\-\_]+/[a-zA-Z0-9\.\-\_]+$")
def is_valid_hf_input(input_str: str) -> bool:
"""Checks if the input is a valid Hugging Face model ID or URL."""
if not input_str or len(input_str) > 200: # Basic length check
return False
if input_str.startswith(("http://", "https://") ):
try:
parsed = urlparse(input_str)
# Check domain and path structure
if parsed.netloc == "huggingface.co":
path_parts = parsed.path.strip("/").split("/")
# Must have at least owner/model, can have more like /tree/main
if len(path_parts) >= 2 and path_parts[0] and path_parts[1]:
# Check characters in the relevant parts
if re.match(r"^[a-zA-Z0-9\.\-\_]+$", path_parts[0]) and \
re.match(r"^[a-zA-Z0-9\.\-\_]+$", path_parts[1]):
return True
return False # Not a valid HF URL format
except Exception:
return False # URL parsing failed
else:
# Assume owner/model format, check with regex
return bool(HF_ID_REGEX.match(input_str))
def _normalise_model_id(raw_id: str) -> str:
"""
Accept either validated 'owner/model' or a validated full URL like
'https://huggingface.co/owner/model'. Return 'owner/model'.
Assumes input has already been validated by is_valid_hf_input.
"""
if raw_id.startswith(("http://", "https://") ):
path = urlparse(raw_id).path.lstrip("/")
parts = path.split("/")
# We know from validation that parts[0] and parts[1] exist
return f"{parts[0]}/{parts[1]}"
return raw_id # Already in owner/model format
# --- End Model ID Helpers ---
# --- Add Counter Helper Functions ---
def log_sbom_generation(model_id: str):
"""Logs a successful SBOM generation event to the Hugging Face dataset."""
if not HF_TOKEN:
logger.warning("HF_TOKEN not set. Skipping SBOM generation logging.")
return
try:
# Normalize model_id before logging
normalized_model_id_for_log = _normalise_model_id(model_id) # added to normalize id
log_data = {
"timestamp": [datetime.utcnow().isoformat()],
"event": ["generated"],
"model_id": [normalized_model_id_for_log] # use normalized_model_id_for_log
}
ds_new_log = Dataset.from_dict(log_data)
# Try to load existing dataset to append
try:
# Use trust_remote_code=True if required by the dataset/model on HF
# Corrected: Removed unnecessary backslashes around 'train'
existing_ds = load_dataset(HF_REPO, token=HF_TOKEN, split='train', trust_remote_code=True)
# Check if dataset is empty or has different columns (handle initial creation)
if len(existing_ds) > 0 and set(existing_ds.column_names) == set(log_data.keys()):
ds_to_push = concatenate_datasets([existing_ds, ds_new_log])
elif len(existing_ds) == 0:
logger.info(f"Dataset {HF_REPO} is empty. Pushing initial data.")
ds_to_push = ds_new_log
else:
logger.warning(f"Dataset {HF_REPO} has unexpected columns {existing_ds.column_names} vs {list(log_data.keys())}. Appending new log anyway, structure might differ.")
# Attempt concatenation even if columns differ slightly, HF might handle it
# Or consider more robust schema migration/handling if needed
ds_to_push = concatenate_datasets([existing_ds, ds_new_log])
except Exception as load_err:
# Handle case where dataset doesn't exist yet or other loading errors
# Corrected: Removed unnecessary backslash in doesn't
logger.info(f"Could not load existing dataset {HF_REPO} (may not exist yet): {load_err}. Pushing new dataset.")
ds_to_push = ds_new_log # ds is already prepared with the new log entry
# Push the updated or new dataset
# Corrected: Removed unnecessary backslash in it's
ds_to_push.push_to_hub(HF_REPO, token=HF_TOKEN, private=True) # Ensure it's private
logger.info(f"Successfully logged SBOM generation for {normalized_model_id_for_log} to {HF_REPO}") # use normalized model id
except Exception as e:
logger.error(f"Failed to log SBOM generation to {HF_REPO}: {e}")
def get_sbom_count() -> str:
"""Retrieves the total count of generated SBOMs from the Hugging Face dataset."""
if not HF_TOKEN:
logger.warning("HF_TOKEN not set. Cannot retrieve SBOM count.")
return "N/A"
try:
# Load the dataset - assumes 'train' split exists after first push
# Use trust_remote_code=True if required by the dataset/model on HF
# Corrected: Removed unnecessary backslashes around 'train'
ds = load_dataset(HF_REPO, token=HF_TOKEN, split='train', trust_remote_code=True)
count = len(ds)
logger.info(f"Retrieved SBOM count: {count} from {HF_REPO}")
# Format count for display (e.g., add commas for large numbers)
return f"{count:,}"
except Exception as e:
logger.error(f"Failed to retrieve SBOM count from {HF_REPO}: {e}")
# Return "N/A" or similar indicator on error
return "N/A"
# --- End Counter Helper Functions ---
@app.on_event("startup")
async def startup_event():
os.makedirs(OUTPUT_DIR, exist_ok=True)
logger.info(f"Output directory ready at {OUTPUT_DIR}")
logger.info(f"Registered routes: {[route.path for route in app.routes]}")
@app.get("/", response_class=HTMLResponse)
async def root(request: Request):
sbom_count = get_sbom_count() # Get count
try:
return templates.TemplateResponse("index.html", {"request": request, "sbom_count": sbom_count}) # Pass to template
except Exception as e:
logger.error(f"Error rendering template: {str(e)}")
# Attempt to render error page even if main page fails
try:
return templates.TemplateResponse("error.html", {"request": request, "error": f"Template rendering error: {str(e)}", "sbom_count": sbom_count})
except Exception as template_err:
# Fallback if error template also fails
logger.error(f"Error rendering error template: {template_err}")
raise HTTPException(status_code=500, detail=f"Template rendering error: {str(e)}")
@app.get("/status", response_model=StatusResponse)
async def get_status():
return StatusResponse(status="operational", version="1.0.0", generator_version="1.0.0")
# Import utils module for completeness score calculation
def import_utils():
"""Import utils module with fallback paths."""
try:
# Try different import paths
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Try direct import first
try:
from utils import calculate_completeness_score
logger.info("Imported utils.calculate_completeness_score directly")
return calculate_completeness_score
except ImportError:
pass
# Try from src
try:
from src.aibom_generator.utils import calculate_completeness_score
logger.info("Imported src.aibom_generator.utils.calculate_completeness_score")
return calculate_completeness_score
except ImportError:
pass
# Try from aibom_generator
try:
from aibom_generator.utils import calculate_completeness_score
logger.info("Imported aibom_generator.utils.calculate_completeness_score")
return calculate_completeness_score
except ImportError:
pass
# If all imports fail, use the default implementation
logger.warning("Could not import calculate_completeness_score, using default implementation")
return None
except Exception as e:
logger.error(f"Error importing utils: {str(e)}")
return None
# Try to import the calculate_completeness_score function
calculate_completeness_score = import_utils()
# Helper function to create a comprehensive completeness_score with field_checklist
def create_comprehensive_completeness_score(aibom=None):
"""
Create a comprehensive completeness_score object with all required attributes.
If aibom is provided and calculate_completeness_score is available, use it to calculate the score.
Otherwise, return a default score structure.
"""
# If we have the calculate_completeness_score function and an AIBOM, use it
if calculate_completeness_score and aibom:
try:
return calculate_completeness_score(aibom, validate=True, use_best_practices=True)
except Exception as e:
logger.error(f"Error calculating completeness score: {str(e)}")
# Otherwise, return a default comprehensive structure
return {
"total_score": 75.5, # Default score for better UI display
"section_scores": {
"required_fields": 20,
"metadata": 15,
"component_basic": 18,
"component_model_card": 15,
"external_references": 7.5
},
"max_scores": {
"required_fields": 20,
"metadata": 20,
"component_basic": 20,
"component_model_card": 30,
"external_references": 10
},
"field_checklist": {
# Required fields
"bomFormat": "β β
β
β
",
"specVersion": "β β
β
β
",
"serialNumber": "β β
β
β
",
"version": "β β
β
β
",
"metadata.timestamp": "β β
β
",
"metadata.tools": "β β
β
",
"metadata.authors": "β β
β
",
"metadata.component": "β β
β
",
# Component basic info
"component.type": "β β
β
",
"component.name": "β β
β
β
",
"component.bom-ref": "β β
β
",
"component.purl": "β β
β
",
"component.description": "β β
β
",
"component.licenses": "β β
β
",
# Model card
"modelCard.modelParameters": "β β
β
",
"modelCard.quantitativeAnalysis": "β β
β
",
"modelCard.considerations": "β β
β
",
# External references
"externalReferences": "β β
",
# Additional fields from FIELD_CLASSIFICATION
"name": "β β
β
β
",
"downloadLocation": "β β
β
β
",
"primaryPurpose": "β β
β
β
",
"suppliedBy": "β β
β
β
",
"energyConsumption": "β β
β
",
"hyperparameter": "β β
β
",
"limitation": "β β
β
",
"safetyRiskAssessment": "β β
β
",
"typeOfModel": "β β
β
",
"modelExplainability": "β β
",
"standardCompliance": "β β
",
"domain": "β β
",
"energyQuantity": "β β
",
"energyUnit": "β β
",
"informationAboutTraining": "β β
",
"informationAboutApplication": "β β
",
"metric": "β β
",
"metricDecisionThreshold": "β β
",
"modelDataPreprocessing": "β β
",
"autonomyType": "β β
",
"useSensitivePersonalInformation": "β β
"
},
"field_tiers": {
# Required fields
"bomFormat": "critical",
"specVersion": "critical",
"serialNumber": "critical",
"version": "critical",
"metadata.timestamp": "important",
"metadata.tools": "important",
"metadata.authors": "important",
"metadata.component": "important",
# Component basic info
"component.type": "important",
"component.name": "critical",
"component.bom-ref": "important",
"component.purl": "important",
"component.description": "important",
"component.licenses": "important",
# Model card
"modelCard.modelParameters": "important",
"modelCard.quantitativeAnalysis": "important",
"modelCard.considerations": "important",
# External references
"externalReferences": "supplementary",
# Additional fields from FIELD_CLASSIFICATION
"name": "critical",
"downloadLocation": "critical",
"primaryPurpose": "critical",
"suppliedBy": "critical",
"energyConsumption": "important",
"hyperparameter": "important",
"limitation": "important",
"safetyRiskAssessment": "important",
"typeOfModel": "important",
"modelExplainability": "supplementary",
"standardCompliance": "supplementary",
"domain": "supplementary",
"energyQuantity": "supplementary",
"energyUnit": "supplementary",
"informationAboutTraining": "supplementary",
"informationAboutApplication": "supplementary",
"metric": "supplementary",
"metricDecisionThreshold": "supplementary",
"modelDataPreprocessing": "supplementary",
"autonomyType": "supplementary",
"useSensitivePersonalInformation": "supplementary"
},
"missing_fields": {
"critical": [],
"important": ["modelCard.quantitativeAnalysis", "energyConsumption", "safetyRiskAssessment"],
"supplementary": ["modelExplainability", "standardCompliance", "energyQuantity", "energyUnit",
"metric", "metricDecisionThreshold", "modelDataPreprocessing",
"autonomyType", "useSensitivePersonalInformation"]
},
"completeness_profile": {
"name": "standard",
"description": "Comprehensive fields for proper documentation",
"satisfied": True
},
"penalty_applied": False,
"penalty_reason": None,
"recommendations": [
{
"priority": "medium",
"field": "modelCard.quantitativeAnalysis",
"message": "Missing important field: modelCard.quantitativeAnalysis",
"recommendation": "Add quantitative analysis information to the model card"
},
{
"priority": "medium",
"field": "energyConsumption",
"message": "Missing important field: energyConsumption - helpful for environmental impact assessment",
"recommendation": "Consider documenting energy consumption metrics for better transparency"
},
{
"priority": "medium",
"field": "safetyRiskAssessment",
"message": "Missing important field: safetyRiskAssessment",
"recommendation": "Add safety risk assessment information to improve documentation"
}
]
}
@app.post("/generate", response_class=HTMLResponse)
async def generate_form(
request: Request,
model_id: str = Form(...),
include_inference: bool = Form(False),
use_best_practices: bool = Form(True)
):
sbom_count = get_sbom_count() # Get count early for context
# --- Input Sanitization ---
sanitized_model_id = html.escape(model_id)
# --- Input Format Validation ---
if not is_valid_hf_input(sanitized_model_id):
error_message = "Invalid input format. Please provide a valid Hugging Face model ID (e.g., 'owner/model') or a full model URL (e.g., 'https://huggingface.co/owner/model') ."
logger.warning(f"Invalid model input format received: {model_id}") # Log original input
# Try to display sanitized input in error message
return templates.TemplateResponse(
"error.html", {"request": request, "error": error_message, "sbom_count": sbom_count, "model_id": sanitized_model_id}
)
# --- Normalize the SANITIZED and VALIDATED model ID ---
normalized_model_id = _normalise_model_id(sanitized_model_id)
# --- Check if the ID corresponds to an actual HF Model ---
try:
hf_api = HfApi()
logger.info(f"Attempting to fetch model info for: {normalized_model_id}")
model_info = hf_api.model_info(normalized_model_id)
logger.info(f"Successfully fetched model info for: {normalized_model_id}")
except RepositoryNotFoundError:
error_message = f"Error: The provided ID \"{normalized_model_id}\" could not be found on Hugging Face or does not correspond to a model repository."
logger.warning(f"Repository not found for ID: {normalized_model_id}")
return templates.TemplateResponse(
"error.html", {"request": request, "error": error_message, "sbom_count": sbom_count, "model_id": normalized_model_id}
)
except Exception as api_err: # Catch other potential API errors
error_message = f"Error verifying model ID with Hugging Face API: {str(api_err)}"
logger.error(f"HF API error for {normalized_model_id}: {str(api_err)}")
return templates.TemplateResponse(
"error.html", {"request": request, "error": error_message, "sbom_count": sbom_count, "model_id": normalized_model_id}
)
# --- End Model Existence Check ---
# --- Main Generation Logic ---
try:
# Try different import paths for AIBOMGenerator
generator = None
try:
from src.aibom_generator.generator import AIBOMGenerator
generator = AIBOMGenerator()
except ImportError:
try:
from aibom_generator.generator import AIBOMGenerator
generator = AIBOMGenerator()
except ImportError:
try:
from generator import AIBOMGenerator
generator = AIBOMGenerator()
except ImportError:
logger.error("Could not import AIBOMGenerator from any known location")
raise ImportError("Could not import AIBOMGenerator from any known location")
# Generate AIBOM (pass SANITIZED ID)
aibom = generator.generate_aibom(
model_id=sanitized_model_id, # Use sanitized ID
include_inference=include_inference,
use_best_practices=use_best_practices
)
enhancement_report = generator.get_enhancement_report()
# Save AIBOM to file, use industry term ai_sbom in file name
# Corrected: Removed unnecessary backslashes around '/' and '_'
# Save AIBOM to file using normalized ID
filename = f"{normalized_model_id.replace('/', '_')}_ai_sbom.json"
filepath = os.path.join(OUTPUT_DIR, filename)
with open(filepath, "w") as f:
json.dump(aibom, f, indent=2)
# --- Log Generation Event ---
log_sbom_generation(sanitized_model_id) # Use sanitized ID
sbom_count = get_sbom_count() # Refresh count after logging
# --- End Log ---
download_url = f"/output/{filename}"
# Create download and UI interaction scripts
download_script = f"""
<script>
function downloadJSON() {{
const a = document.createElement('a');
a.href = '{download_url}';
a.download = '{filename}';
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
}}
function switchTab(tabId) {{
// Hide all tabs
document.querySelectorAll('.tab-content').forEach(tab => {{
tab.classList.remove('active');
}});
// Deactivate all tab buttons
document.querySelectorAll('.aibom-tab').forEach(button => {{
button.classList.remove('active');
}});
// Show the selected tab
document.getElementById(tabId).classList.add('active');
// Activate the clicked button
event.currentTarget.classList.add('active');
}}
function toggleCollapsible(element) {{
element.classList.toggle('active');
var content = element.nextElementSibling;
if (content.style.maxHeight) {{
content.style.maxHeight = null;
content.classList.remove('active');
}} else {{
content.style.maxHeight = content.scrollHeight + "px";
content.classList.add('active');
}}
}}
</script>
"""
# Get completeness score or create a comprehensive one if not available
# Use sanitized_model_id
completeness_score = None
if hasattr(generator, 'get_completeness_score'):
try:
completeness_score = generator.get_completeness_score(sanitized_model_id)
logger.info("Successfully retrieved completeness_score from generator")
except Exception as e:
logger.error(f"Completeness score error from generator: {str(e)}")
# If completeness_score is None or doesn't have field_checklist, use comprehensive one
if completeness_score is None or not isinstance(completeness_score, dict) or 'field_checklist' not in completeness_score:
logger.info("Using comprehensive completeness_score with field_checklist")
completeness_score = create_comprehensive_completeness_score(aibom)
# Ensure enhancement_report has the right structure
if enhancement_report is None:
enhancement_report = {
"ai_enhanced": False,
"ai_model": None,
"original_score": {"total_score": 0, "completeness_score": 0},
"final_score": {"total_score": 0, "completeness_score": 0},
"improvement": 0
}
else:
# Ensure original_score has completeness_score
if "original_score" not in enhancement_report or enhancement_report["original_score"] is None:
enhancement_report["original_score"] = {"total_score": 0, "completeness_score": 0}
elif "completeness_score" not in enhancement_report["original_score"]:
enhancement_report["original_score"]["completeness_score"] = enhancement_report["original_score"].get("total_score", 0)
# Ensure final_score has completeness_score
if "final_score" not in enhancement_report or enhancement_report["final_score"] is None:
enhancement_report["final_score"] = {"total_score": 0, "completeness_score": 0}
elif "completeness_score" not in enhancement_report["final_score"]:
enhancement_report["final_score"]["completeness_score"] = enhancement_report["final_score"].get("total_score", 0)
# Add display names and tooltips for score sections
display_names = {
"required_fields": "Required Fields",
"metadata": "Metadata",
"component_basic": "Component Basic Info",
"component_model_card": "Model Card",
"external_references": "External References"
}
tooltips = {
"required_fields": "Basic required fields for a valid AIBOM",
"metadata": "Information about the AIBOM itself",
"component_basic": "Basic information about the AI model component",
"component_model_card": "Detailed model card information",
"external_references": "Links to external resources"
}
weights = {
"required_fields": 20,
"metadata": 20,
"component_basic": 20,
"component_model_card": 30,
"external_references": 10
}
# Render the template with all necessary data, with normalized model ID
return templates.TemplateResponse(
"result.html",
{
"request": request,
"model_id": normalized_model_id,
"aibom": aibom,
"enhancement_report": enhancement_report,
"completeness_score": completeness_score,
"download_url": download_url,
"download_script": download_script,
"display_names": display_names,
"tooltips": tooltips,
"weights": weights,
"sbom_count": sbom_count,
"display_names": display_names,
"tooltips": tooltips,
"weights": weights
}
)
# --- Main Exception Handling ---
except Exception as e:
logger.error(f"Error generating AI SBOM: {str(e)}")
sbom_count = get_sbom_count() # Refresh count just in case
# Pass count, added normalized model ID
return templates.TemplateResponse(
"error.html", {"request": request, "error": str(e), "sbom_count": sbom_count, "model_id": normalized_model_id}
)
@app.get("/download/{filename}")
async def download_file(filename: str):
"""
Download a generated AIBOM file.
This endpoint serves the generated AIBOM JSON files for download.
"""
file_path = os.path.join(OUTPUT_DIR, filename)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(
file_path,
media_type="application/json",
filename=filename
)
# If running directly (for local testing)
if __name__ == "__main__":
import uvicorn
# Ensure HF_TOKEN is set for local testing if needed
if not HF_TOKEN:
print("Warning: HF_TOKEN environment variable not set. SBOM count will show N/A and logging will be skipped.")
uvicorn.run(app, host="0.0.0.0", port=8000)
|