a1c00l commited on
Commit
8819832
·
verified ·
1 Parent(s): 6909df5

Upload 9 files

Browse files
src/aibom_generator/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ """
2
+ AIBOM Generator for Hugging Face Models.
3
+
4
+ This package provides tools to generate AI Bills of Materials (AIBOMs) in CycloneDX format
5
+ for machine learning models hosted on the Hugging Face Hub.
6
+ """
7
+
8
+ __version__ = "0.1.0"
src/aibom_generator/api.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ FastAPI server for the AIBOM Generator.
3
+ """
4
+
5
+ import logging
6
+ import os
7
+ from typing import Dict, List, Optional, Any, Union
8
+
9
+ from fastapi import FastAPI, HTTPException, BackgroundTasks
10
+ from fastapi.middleware.cors import CORSMiddleware
11
+ from pydantic import BaseModel
12
+
13
+ from aibom_generator.generator import AIBOMGenerator
14
+ from aibom_generator.utils import setup_logging, calculate_completeness_score
15
+
16
+ # Set up logging
17
+ setup_logging()
18
+ logger = logging.getLogger(__name__)
19
+
20
+ # Create FastAPI app
21
+ app = FastAPI(
22
+ title="AIBOM Generator API",
23
+ description="API for generating AI Bills of Materials (AIBOMs) in CycloneDX format for Hugging Face models.",
24
+ version="0.1.0",
25
+ )
26
+
27
+ # Add CORS middleware
28
+ app.add_middleware(
29
+ CORSMiddleware,
30
+ allow_origins=["*"],
31
+ allow_credentials=True,
32
+ allow_methods=["*"],
33
+ allow_headers=["*"],
34
+ )
35
+
36
+ # Create generator instance
37
+ generator = AIBOMGenerator(
38
+ hf_token=os.environ.get("HF_TOKEN"),
39
+ inference_model_url=os.environ.get("AIBOM_INFERENCE_URL"),
40
+ use_inference=os.environ.get("AIBOM_USE_INFERENCE", "true").lower() == "true",
41
+ cache_dir=os.environ.get("AIBOM_CACHE_DIR"),
42
+ )
43
+
44
+
45
+ # Define request and response models
46
+ class GenerateRequest(BaseModel):
47
+ model_id: str
48
+ include_inference: Optional[bool] = None
49
+ completeness_threshold: Optional[int] = 0
50
+
51
+
52
+ class GenerateResponse(BaseModel):
53
+ aibom: Dict[str, Any]
54
+ completeness_score: int
55
+ model_id: str
56
+
57
+
58
+ class StatusResponse(BaseModel):
59
+ status: str
60
+ version: str
61
+
62
+
63
+ # Define API endpoints
64
+ @app.get("/", response_model=StatusResponse)
65
+ async def root():
66
+ """Get API status."""
67
+ return {
68
+ "status": "ok",
69
+ "version": "0.1.0",
70
+ }
71
+
72
+
73
+ @app.post("/generate", response_model=GenerateResponse)
74
+ async def generate_aibom(request: GenerateRequest):
75
+ """Generate an AIBOM for a Hugging Face model."""
76
+ try:
77
+ # Generate the AIBOM
78
+ aibom = generator.generate_aibom(
79
+ model_id=request.model_id,
80
+ include_inference=request.include_inference,
81
+ )
82
+
83
+ # Calculate completeness score
84
+ completeness_score = calculate_completeness_score(aibom)
85
+
86
+ # Check if it meets the threshold
87
+ if completeness_score < request.completeness_threshold:
88
+ raise HTTPException(
89
+ status_code=400,
90
+ detail=f"AIBOM completeness score ({completeness_score}) is below threshold ({request.completeness_threshold})",
91
+ )
92
+
93
+ return {
94
+ "aibom": aibom,
95
+ "completeness_score": completeness_score,
96
+ "model_id": request.model_id,
97
+ }
98
+ except Exception as e:
99
+ logger.error(f"Error generating AIBOM: {e}")
100
+ raise HTTPException(
101
+ status_code=500,
102
+ detail=f"Error generating AIBOM: {str(e)}",
103
+ )
104
+
105
+
106
+ @app.post("/generate/async")
107
+ async def generate_aibom_async(
108
+ request: GenerateRequest,
109
+ background_tasks: BackgroundTasks,
110
+ ):
111
+ """Generate an AIBOM asynchronously for a Hugging Face model."""
112
+ # Add to background tasks
113
+ background_tasks.add_task(
114
+ _generate_aibom_background,
115
+ request.model_id,
116
+ request.include_inference,
117
+ request.completeness_threshold,
118
+ )
119
+
120
+ return {
121
+ "status": "accepted",
122
+ "message": f"AIBOM generation for {request.model_id} started in the background",
123
+ }
124
+
125
+
126
+ async def _generate_aibom_background(
127
+ model_id: str,
128
+ include_inference: Optional[bool] = None,
129
+ completeness_threshold: Optional[int] = 0,
130
+ ):
131
+ """Generate an AIBOM in the background."""
132
+ try:
133
+ # Generate the AIBOM
134
+ aibom = generator.generate_aibom(
135
+ model_id=model_id,
136
+ include_inference=include_inference,
137
+ )
138
+
139
+ # Calculate completeness score
140
+ completeness_score = calculate_completeness_score(aibom)
141
+
142
+ # TODO: Store the result or notify the user
143
+ logger.info(f"Background AIBOM generation completed for {model_id}")
144
+ logger.info(f"Completeness score: {completeness_score}")
145
+ except Exception as e:
146
+ logger.error(f"Error in background AIBOM generation for {model_id}: {e}")
147
+
148
+
149
+ @app.get("/health")
150
+ async def health():
151
+ """Health check endpoint."""
152
+ return {"status": "healthy"}
153
+
154
+
155
+ if __name__ == "__main__":
156
+ import uvicorn
157
+ uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 5000)))
src/aibom_generator/cli.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ CLI interface for the AIBOM Generator.
3
+ """
4
+
5
+ import argparse
6
+ import json
7
+ import os
8
+ import sys
9
+ from typing import Optional
10
+
11
+ from aibom_generator.generator import AIBOMGenerator
12
+
13
+
14
+ def parse_args():
15
+ """Parse command line arguments."""
16
+ parser = argparse.ArgumentParser(
17
+ description="Generate AI Bills of Materials (AIBOMs) in CycloneDX format for Hugging Face models."
18
+ )
19
+
20
+ parser.add_argument(
21
+ "model_id",
22
+ help="Hugging Face model ID (e.g., 'google/bert-base-uncased')"
23
+ )
24
+
25
+ parser.add_argument(
26
+ "-o", "--output",
27
+ help="Output file path (default: <model_id>.aibom.json)",
28
+ default=None
29
+ )
30
+
31
+ parser.add_argument(
32
+ "--token",
33
+ help="Hugging Face API token for accessing private models",
34
+ default=os.environ.get("HF_TOKEN")
35
+ )
36
+
37
+ parser.add_argument(
38
+ "--inference-url",
39
+ help="URL of the inference model service for metadata extraction",
40
+ default=os.environ.get("AIBOM_INFERENCE_URL")
41
+ )
42
+
43
+ parser.add_argument(
44
+ "--no-inference",
45
+ help="Disable inference model for metadata extraction",
46
+ action="store_true"
47
+ )
48
+
49
+ parser.add_argument(
50
+ "--cache-dir",
51
+ help="Directory to cache API responses and model cards",
52
+ default=os.environ.get("AIBOM_CACHE_DIR", ".aibom_cache")
53
+ )
54
+
55
+ parser.add_argument(
56
+ "--completeness-threshold",
57
+ help="Minimum completeness score (0-100) required for the AIBOM",
58
+ type=int,
59
+ default=0
60
+ )
61
+
62
+ parser.add_argument(
63
+ "--format",
64
+ help="Output format (json or yaml)",
65
+ choices=["json", "yaml"],
66
+ default="json"
67
+ )
68
+
69
+ parser.add_argument(
70
+ "--pretty",
71
+ help="Pretty-print the output",
72
+ action="store_true"
73
+ )
74
+
75
+ return parser.parse_args()
76
+
77
+
78
+ def main():
79
+ """Main entry point for the CLI."""
80
+ args = parse_args()
81
+
82
+ # Determine output file if not specified
83
+ if not args.output:
84
+ model_name = args.model_id.replace("/", "_")
85
+ args.output = f"{model_name}.aibom.json"
86
+
87
+ # Create the generator
88
+ generator = AIBOMGenerator(
89
+ hf_token=args.token,
90
+ inference_model_url=args.inference_url,
91
+ use_inference=not args.no_inference,
92
+ cache_dir=args.cache_dir
93
+ )
94
+
95
+ try:
96
+ # Generate the AIBOM
97
+ aibom = generator.generate_aibom(
98
+ model_id=args.model_id,
99
+ output_file=None # We'll handle saving ourselves
100
+ )
101
+
102
+ # Calculate completeness score (placeholder for now)
103
+ completeness_score = calculate_completeness_score(aibom)
104
+
105
+ # Check if it meets the threshold
106
+ if completeness_score < args.completeness_threshold:
107
+ print(f"Warning: AIBOM completeness score ({completeness_score}) is below threshold ({args.completeness_threshold})")
108
+
109
+ # Save the output
110
+ save_output(aibom, args.output, args.format, args.pretty)
111
+
112
+ print(f"AIBOM generated successfully: {args.output}")
113
+ print(f"Completeness score: {completeness_score}/100")
114
+
115
+ return 0
116
+
117
+ except Exception as e:
118
+ print(f"Error generating AIBOM: {e}", file=sys.stderr)
119
+ return 1
120
+
121
+
122
+ def calculate_completeness_score(aibom):
123
+ """
124
+ Calculate a completeness score for the AIBOM.
125
+
126
+ This is a placeholder implementation that will be replaced with a more
127
+ sophisticated scoring algorithm based on the field mapping framework.
128
+ """
129
+ # TODO: Implement proper completeness scoring
130
+ score = 0
131
+
132
+ # Check required fields
133
+ if all(field in aibom for field in ["bomFormat", "specVersion", "serialNumber", "version"]):
134
+ score += 20
135
+
136
+ # Check metadata
137
+ if "metadata" in aibom:
138
+ metadata = aibom["metadata"]
139
+ if "timestamp" in metadata:
140
+ score += 5
141
+ if "tools" in metadata and metadata["tools"]:
142
+ score += 5
143
+ if "authors" in metadata and metadata["authors"]:
144
+ score += 5
145
+ if "component" in metadata:
146
+ score += 5
147
+
148
+ # Check components
149
+ if "components" in aibom and aibom["components"]:
150
+ component = aibom["components"][0]
151
+ if "type" in component and component["type"] == "machine-learning-model":
152
+ score += 10
153
+ if "name" in component:
154
+ score += 5
155
+ if "bom-ref" in component:
156
+ score += 5
157
+ if "licenses" in component:
158
+ score += 5
159
+ if "externalReferences" in component:
160
+ score += 5
161
+ if "modelCard" in component:
162
+ model_card = component["modelCard"]
163
+ if "modelParameters" in model_card:
164
+ score += 10
165
+ if "quantitativeAnalysis" in model_card:
166
+ score += 10
167
+ if "considerations" in model_card:
168
+ score += 10
169
+
170
+ return score
171
+
172
+
173
+ def save_output(aibom, output_file, format_type, pretty):
174
+ """Save the AIBOM to the specified output file."""
175
+ if format_type == "json":
176
+ with open(output_file, "w") as f:
177
+ if pretty:
178
+ json.dump(aibom, f, indent=2)
179
+ else:
180
+ json.dump(aibom, f)
181
+ else: # yaml
182
+ try:
183
+ import yaml
184
+ with open(output_file, "w") as f:
185
+ yaml.dump(aibom, f, default_flow_style=False)
186
+ except ImportError:
187
+ print("Warning: PyYAML not installed. Falling back to JSON format.")
188
+ with open(output_file, "w") as f:
189
+ json.dump(aibom, f, indent=2 if pretty else None)
190
+
191
+
192
+ if __name__ == "__main__":
193
+ sys.exit(main())
src/aibom_generator/generator.py ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Core functionality for generating CycloneDX AIBOMs from Hugging Face models.
3
+ """
4
+
5
+ import json
6
+ import uuid
7
+ import datetime
8
+ from typing import Dict, List, Optional, Union, Any
9
+
10
+ from huggingface_hub import HfApi, ModelCard, ModelCardData
11
+
12
+
13
+ class AIBOMGenerator:
14
+ """
15
+ Generator for AI Bills of Materials (AIBOMs) in CycloneDX format.
16
+
17
+ This class provides functionality to generate CycloneDX 1.6 compliant
18
+ AIBOMs for machine learning models hosted on the Hugging Face Hub.
19
+ """
20
+
21
+ def __init__(
22
+ self,
23
+ hf_token: Optional[str] = None,
24
+ inference_model_url: Optional[str] = None,
25
+ use_inference: bool = True,
26
+ cache_dir: Optional[str] = None,
27
+ ):
28
+ """
29
+ Initialize the AIBOM Generator.
30
+
31
+ Args:
32
+ hf_token: Hugging Face API token for accessing private models
33
+ inference_model_url: URL of the inference model service for extracting
34
+ metadata from unstructured text
35
+ use_inference: Whether to use the inference model for metadata extraction
36
+ cache_dir: Directory to cache API responses and model cards
37
+ """
38
+ self.hf_api = HfApi(token=hf_token)
39
+ self.inference_model_url = inference_model_url
40
+ self.use_inference = use_inference
41
+ self.cache_dir = cache_dir
42
+
43
+ def generate_aibom(
44
+ self,
45
+ model_id: str,
46
+ output_file: Optional[str] = None,
47
+ include_inference: Optional[bool] = None,
48
+ ) -> Dict[str, Any]:
49
+ """
50
+ Generate a CycloneDX AIBOM for the specified Hugging Face model.
51
+
52
+ Args:
53
+ model_id: The Hugging Face model ID (e.g., "google/bert-base-uncased")
54
+ output_file: Optional path to save the generated AIBOM
55
+ include_inference: Override the default inference model usage setting
56
+
57
+ Returns:
58
+ The generated AIBOM as a dictionary
59
+ """
60
+ # Determine whether to use inference
61
+ use_inference = include_inference if include_inference is not None else self.use_inference
62
+
63
+ # Fetch model information
64
+ model_info = self._fetch_model_info(model_id)
65
+ model_card = self._fetch_model_card(model_id)
66
+
67
+ # Generate the AIBOM
68
+ aibom = self._create_aibom_structure(model_id, model_info, model_card, use_inference)
69
+
70
+ # Save to file if requested
71
+ if output_file:
72
+ with open(output_file, 'w') as f:
73
+ json.dump(aibom, f, indent=2)
74
+
75
+ return aibom
76
+
77
+ def _fetch_model_info(self, model_id: str) -> Dict[str, Any]:
78
+ """
79
+ Fetch model information from the Hugging Face API.
80
+
81
+ Args:
82
+ model_id: The Hugging Face model ID
83
+
84
+ Returns:
85
+ Model information as a dictionary
86
+ """
87
+ # TODO: Implement caching
88
+ try:
89
+ model_info = self.hf_api.model_info(model_id)
90
+ return model_info
91
+ except Exception as e:
92
+ # Log the error and return empty dict
93
+ print(f"Error fetching model info for {model_id}: {e}")
94
+ return {}
95
+
96
+ def _fetch_model_card(self, model_id: str) -> Optional[ModelCard]:
97
+ """
98
+ Fetch the model card for the specified model.
99
+
100
+ Args:
101
+ model_id: The Hugging Face model ID
102
+
103
+ Returns:
104
+ ModelCard object if available, None otherwise
105
+ """
106
+ # TODO: Implement caching
107
+ try:
108
+ model_card = ModelCard.load(model_id)
109
+ return model_card
110
+ except Exception as e:
111
+ # Log the error and return None
112
+ print(f"Error fetching model card for {model_id}: {e}")
113
+ return None
114
+
115
+ def _create_aibom_structure(
116
+ self,
117
+ model_id: str,
118
+ model_info: Dict[str, Any],
119
+ model_card: Optional[ModelCard],
120
+ use_inference: bool,
121
+ ) -> Dict[str, Any]:
122
+ """
123
+ Create the CycloneDX AIBOM structure.
124
+
125
+ Args:
126
+ model_id: The Hugging Face model ID
127
+ model_info: Model information from the API
128
+ model_card: ModelCard object if available
129
+ use_inference: Whether to use inference for metadata extraction
130
+
131
+ Returns:
132
+ CycloneDX AIBOM as a dictionary
133
+ """
134
+ # Extract structured metadata
135
+ metadata = self._extract_structured_metadata(model_id, model_info, model_card)
136
+
137
+ # Extract unstructured metadata if requested and available
138
+ if use_inference and model_card and self.inference_model_url:
139
+ unstructured_metadata = self._extract_unstructured_metadata(model_card)
140
+ # Merge with structured metadata, giving priority to structured
141
+ metadata = {**unstructured_metadata, **metadata}
142
+
143
+ # Create the AIBOM structure
144
+ aibom = {
145
+ "bomFormat": "CycloneDX",
146
+ "specVersion": "1.6",
147
+ "serialNumber": f"urn:uuid:{str(uuid.uuid4())}",
148
+ "version": 1,
149
+ "metadata": self._create_metadata_section(model_id, metadata),
150
+ "components": [self._create_component_section(model_id, metadata)],
151
+ }
152
+
153
+ # Add external references if available
154
+ if "external_references" in metadata:
155
+ aibom["externalReferences"] = metadata["external_references"]
156
+
157
+ return aibom
158
+
159
+ def _extract_structured_metadata(
160
+ self,
161
+ model_id: str,
162
+ model_info: Dict[str, Any],
163
+ model_card: Optional[ModelCard],
164
+ ) -> Dict[str, Any]:
165
+ """
166
+ Extract structured metadata from model info and model card.
167
+
168
+ Args:
169
+ model_id: The Hugging Face model ID
170
+ model_info: Model information from the API
171
+ model_card: ModelCard object if available
172
+
173
+ Returns:
174
+ Structured metadata as a dictionary
175
+ """
176
+ metadata = {}
177
+
178
+ # Extract from model_info
179
+ if model_info:
180
+ metadata.update({
181
+ "name": model_info.modelId.split("/")[-1] if hasattr(model_info, "modelId") else model_id.split("/")[-1],
182
+ "author": model_info.author if hasattr(model_info, "author") else None,
183
+ "tags": model_info.tags if hasattr(model_info, "tags") else [],
184
+ "pipeline_tag": model_info.pipeline_tag if hasattr(model_info, "pipeline_tag") else None,
185
+ "downloads": model_info.downloads if hasattr(model_info, "downloads") else 0,
186
+ "last_modified": model_info.lastModified if hasattr(model_info, "lastModified") else None,
187
+ })
188
+
189
+ # Extract from model_card
190
+ if model_card and model_card.data:
191
+ card_data = model_card.data.to_dict() if hasattr(model_card.data, "to_dict") else {}
192
+
193
+ # Map card data to metadata
194
+ metadata.update({
195
+ "language": card_data.get("language"),
196
+ "license": card_data.get("license"),
197
+ "library_name": card_data.get("library_name"),
198
+ "base_model": card_data.get("base_model"),
199
+ "datasets": card_data.get("datasets"),
200
+ "model_name": card_data.get("model_name"),
201
+ "tags": card_data.get("tags", metadata.get("tags", [])),
202
+ })
203
+
204
+ # Extract evaluation results if available
205
+ if hasattr(model_card.data, "eval_results") and model_card.data.eval_results:
206
+ metadata["eval_results"] = model_card.data.eval_results
207
+
208
+ return {k: v for k, v in metadata.items() if v is not None}
209
+
210
+ def _extract_unstructured_metadata(self, model_card: ModelCard) -> Dict[str, Any]:
211
+ """
212
+ Extract metadata from unstructured text using the inference model.
213
+
214
+ Args:
215
+ model_card: ModelCard object
216
+
217
+ Returns:
218
+ Extracted metadata as a dictionary
219
+ """
220
+ # TODO: Implement inference model integration
221
+ # This is a placeholder that will be replaced with actual inference model calls
222
+ return {}
223
+
224
+ def _create_metadata_section(self, model_id: str, metadata: Dict[str, Any]) -> Dict[str, Any]:
225
+ """
226
+ Create the metadata section of the CycloneDX AIBOM.
227
+
228
+ Args:
229
+ model_id: The Hugging Face model ID
230
+ metadata: Extracted metadata
231
+
232
+ Returns:
233
+ Metadata section as a dictionary
234
+ """
235
+ # Create timestamp
236
+ timestamp = datetime.datetime.utcnow().isoformat() + "Z"
237
+
238
+ # Create tools section
239
+ tools = [{
240
+ "vendor": "AIBOM Generator",
241
+ "name": "aibom-generator",
242
+ "version": __import__("aibom_generator").__version__,
243
+ }]
244
+
245
+ # Create authors section
246
+ authors = []
247
+ if "author" in metadata and metadata["author"]:
248
+ authors.append({
249
+ "name": metadata["author"],
250
+ "url": f"https://huggingface.co/{metadata['author']}"
251
+ })
252
+
253
+ # Create component section (reference to the main component)
254
+ component = {
255
+ "type": "machine-learning-model",
256
+ "name": metadata.get("name", model_id.split("/")[-1]),
257
+ "bom-ref": f"pkg:huggingface/{model_id}",
258
+ }
259
+
260
+ # Create properties section
261
+ properties = []
262
+ for key, value in metadata.items():
263
+ if key not in ["name", "author", "license"] and value is not None:
264
+ if isinstance(value, (list, dict)):
265
+ value = json.dumps(value)
266
+ properties.append({
267
+ "name": key,
268
+ "value": str(value)
269
+ })
270
+
271
+ # Assemble metadata section
272
+ metadata_section = {
273
+ "timestamp": timestamp,
274
+ "tools": tools,
275
+ }
276
+
277
+ if authors:
278
+ metadata_section["authors"] = authors
279
+
280
+ if component:
281
+ metadata_section["component"] = component
282
+
283
+ if properties:
284
+ metadata_section["properties"] = properties
285
+
286
+ return metadata_section
287
+
288
+ def _create_component_section(self, model_id: str, metadata: Dict[str, Any]) -> Dict[str, Any]:
289
+ """
290
+ Create the component section of the CycloneDX AIBOM.
291
+
292
+ Args:
293
+ model_id: The Hugging Face model ID
294
+ metadata: Extracted metadata
295
+
296
+ Returns:
297
+ Component section as a dictionary
298
+ """
299
+ # Create basic component information
300
+ component = {
301
+ "type": "machine-learning-model",
302
+ "bom-ref": f"pkg:huggingface/{model_id}",
303
+ "name": metadata.get("name", model_id.split("/")[-1]),
304
+ "purl": f"pkg:huggingface/{model_id}",
305
+ }
306
+
307
+ # Add description if available
308
+ if "description" in metadata:
309
+ component["description"] = metadata["description"]
310
+
311
+ # Add version if available
312
+ if "version" in metadata:
313
+ component["version"] = metadata["version"]
314
+
315
+ # Add license if available
316
+ if "license" in metadata:
317
+ component["licenses"] = [{
318
+ "license": {
319
+ "id": metadata["license"]
320
+ }
321
+ }]
322
+
323
+ # Add external references
324
+ component["externalReferences"] = [
325
+ {
326
+ "type": "website",
327
+ "url": f"https://huggingface.co/{model_id}"
328
+ }
329
+ ]
330
+
331
+ # Add model card section
332
+ component["modelCard"] = self._create_model_card_section(metadata)
333
+
334
+ return component
335
+
336
+ def _create_model_card_section(self, metadata: Dict[str, Any]) -> Dict[str, Any]:
337
+ """
338
+ Create the modelCard section of the component.
339
+
340
+ Args:
341
+ metadata: Extracted metadata
342
+
343
+ Returns:
344
+ ModelCard section as a dictionary
345
+ """
346
+ model_card_section = {}
347
+
348
+ # Add model parameters if available
349
+ model_parameters = {}
350
+ for param in ["base_model", "library_name", "pipeline_tag"]:
351
+ if param in metadata and metadata[param]:
352
+ model_parameters[param] = metadata[param]
353
+
354
+ if model_parameters:
355
+ model_card_section["modelParameters"] = model_parameters
356
+
357
+ # Add quantitative analysis if available
358
+ if "eval_results" in metadata:
359
+ model_card_section["quantitativeAnalysis"] = {
360
+ "performanceMetrics": metadata["eval_results"]
361
+ }
362
+
363
+ # Add considerations if available
364
+ considerations = {}
365
+ for consideration in ["limitations", "ethical_considerations", "bias", "risks"]:
366
+ if consideration in metadata and metadata[consideration]:
367
+ considerations[consideration] = metadata[consideration]
368
+
369
+ if considerations:
370
+ model_card_section["considerations"] = considerations
371
+
372
+ # Add properties if available
373
+ properties = []
374
+ for key, value in metadata.items():
375
+ if key not in ["name", "author", "license", "base_model", "library_name",
376
+ "pipeline_tag", "eval_results", "limitations",
377
+ "ethical_considerations", "bias", "risks"] and value is not None:
378
+ if isinstance(value, (list, dict)):
379
+ value = json.dumps(value)
380
+ properties.append({
381
+ "name": key,
382
+ "value": str(value)
383
+ })
384
+
385
+ if properties:
386
+ model_card_section["properties"] = properties
387
+
388
+ return model_card_section
src/aibom_generator/inference.py ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Inference model integration for extracting metadata from unstructured text.
3
+ """
4
+
5
+ import json
6
+ import logging
7
+ import re
8
+ import requests
9
+ from typing import Dict, List, Optional, Any, Union
10
+
11
+ logger = logging.getLogger(__name__)
12
+
13
+
14
+ class InferenceModelClient:
15
+ """
16
+ Client for interacting with the inference model service to extract
17
+ metadata from unstructured text in model cards.
18
+ """
19
+
20
+ def __init__(
21
+ self,
22
+ inference_url: str,
23
+ timeout: int = 30,
24
+ max_retries: int = 3,
25
+ ):
26
+ """
27
+ Initialize the inference model client.
28
+
29
+ Args:
30
+ inference_url: URL of the inference model service
31
+ timeout: Request timeout in seconds
32
+ max_retries: Maximum number of retries for failed requests
33
+ """
34
+ self.inference_url = inference_url
35
+ self.timeout = timeout
36
+ self.max_retries = max_retries
37
+
38
+ def extract_metadata(
39
+ self,
40
+ model_card_text: str,
41
+ structured_metadata: Optional[Dict[str, Any]] = None,
42
+ fields: Optional[List[str]] = None,
43
+ ) -> Dict[str, Any]:
44
+ """
45
+ Extract metadata from unstructured text using the inference model.
46
+
47
+ Args:
48
+ model_card_text: The text content of the model card
49
+ structured_metadata: Optional structured metadata to provide context
50
+ fields: Optional list of specific fields to extract
51
+
52
+ Returns:
53
+ Extracted metadata as a dictionary
54
+ """
55
+ if not self.inference_url:
56
+ logger.warning("No inference model URL provided, skipping extraction")
57
+ return {}
58
+
59
+ # Prepare the request payload
60
+ payload = {
61
+ "text": model_card_text,
62
+ "structured_metadata": structured_metadata or {},
63
+ "fields": fields or [],
64
+ }
65
+
66
+ # Make the request to the inference model
67
+ try:
68
+ response = self._make_request(payload)
69
+ return response.get("metadata", {})
70
+ except Exception as e:
71
+ logger.error(f"Error extracting metadata with inference model: {e}")
72
+ return {}
73
+
74
+ def _make_request(self, payload: Dict[str, Any]) -> Dict[str, Any]:
75
+ """
76
+ Make a request to the inference model service.
77
+
78
+ Args:
79
+ payload: Request payload
80
+
81
+ Returns:
82
+ Response from the inference model
83
+
84
+ Raises:
85
+ Exception: If the request fails after max_retries
86
+ """
87
+ headers = {"Content-Type": "application/json"}
88
+
89
+ for attempt in range(self.max_retries):
90
+ try:
91
+ response = requests.post(
92
+ self.inference_url,
93
+ headers=headers,
94
+ json=payload,
95
+ timeout=self.timeout,
96
+ )
97
+ response.raise_for_status()
98
+ return response.json()
99
+ except requests.exceptions.RequestException as e:
100
+ logger.warning(f"Request failed (attempt {attempt+1}/{self.max_retries}): {e}")
101
+ if attempt == self.max_retries - 1:
102
+ raise
103
+
104
+ # This should never be reached due to the raise in the loop
105
+ raise Exception("Failed to make request to inference model")
106
+
107
+
108
+ class FallbackExtractor:
109
+ """
110
+ Fallback extractor for extracting metadata using regex and heuristics
111
+ when the inference model is not available or fails.
112
+ """
113
+
114
+ def extract_metadata(
115
+ self,
116
+ model_card_text: str,
117
+ structured_metadata: Optional[Dict[str, Any]] = None,
118
+ fields: Optional[List[str]] = None,
119
+ ) -> Dict[str, Any]:
120
+ """
121
+ Extract metadata using regex and heuristics.
122
+
123
+ Args:
124
+ model_card_text: The text content of the model card
125
+ structured_metadata: Optional structured metadata to provide context
126
+ fields: Optional list of specific fields to extract
127
+
128
+ Returns:
129
+ Extracted metadata as a dictionary
130
+ """
131
+ metadata = {}
132
+
133
+ # Extract model parameters
134
+ metadata.update(self._extract_model_parameters(model_card_text))
135
+
136
+ # Extract limitations and ethical considerations
137
+ metadata.update(self._extract_considerations(model_card_text))
138
+
139
+ # Extract datasets
140
+ metadata.update(self._extract_datasets(model_card_text))
141
+
142
+ # Extract evaluation results
143
+ metadata.update(self._extract_evaluation_results(model_card_text))
144
+
145
+ return metadata
146
+
147
+ def _extract_model_parameters(self, text: str) -> Dict[str, Any]:
148
+ """Extract model parameters from text."""
149
+ params = {}
150
+
151
+ # Extract model type/architecture
152
+ architecture_patterns = [
153
+ r"(?:model|architecture)(?:\s+type)?(?:\s*:\s*|\s+is\s+)([A-Za-z0-9\-]+)",
154
+ r"based\s+on\s+(?:the\s+)?([A-Za-z0-9\-]+)(?:\s+architecture)?",
155
+ ]
156
+
157
+ for pattern in architecture_patterns:
158
+ match = re.search(pattern, text, re.IGNORECASE)
159
+ if match:
160
+ params["architecture"] = match.group(1).strip()
161
+ break
162
+
163
+ # Extract number of parameters
164
+ param_patterns = [
165
+ r"(\d+(?:\.\d+)?)\s*(?:B|M|K)?\s*(?:billion|million|thousand)?\s*parameters",
166
+ r"parameters\s*:\s*(\d+(?:\.\d+)?)\s*(?:B|M|K)?",
167
+ ]
168
+
169
+ for pattern in param_patterns:
170
+ match = re.search(pattern, text, re.IGNORECASE)
171
+ if match:
172
+ params["parameters"] = match.group(1).strip()
173
+ # TODO: Normalize to a standard unit
174
+ break
175
+
176
+ return {"model_parameters": params} if params else {}
177
+
178
+ def _extract_considerations(self, text: str) -> Dict[str, Any]:
179
+ """Extract limitations and ethical considerations from text."""
180
+ considerations = {}
181
+
182
+ # Extract limitations
183
+ limitations_section = self._extract_section(text, ["limitations", "limits", "shortcomings"])
184
+ if limitations_section:
185
+ considerations["limitations"] = limitations_section
186
+
187
+ # Extract ethical considerations
188
+ ethics_section = self._extract_section(
189
+ text, ["ethical considerations", "ethics", "bias", "fairness", "risks"]
190
+ )
191
+ if ethics_section:
192
+ considerations["ethical_considerations"] = ethics_section
193
+
194
+ return {"considerations": considerations} if considerations else {}
195
+
196
+ def _extract_datasets(self, text: str) -> Dict[str, Any]:
197
+ """Extract dataset information from text."""
198
+ datasets = []
199
+
200
+ # Extract dataset mentions
201
+ dataset_patterns = [
202
+ r"trained\s+on\s+(?:the\s+)?([A-Za-z0-9\-\s]+)(?:\s+dataset)?",
203
+ r"dataset(?:\s*:\s*|\s+is\s+)([A-Za-z0-9\-\s]+)",
204
+ r"using\s+(?:the\s+)?([A-Za-z0-9\-\s]+)(?:\s+dataset)",
205
+ ]
206
+
207
+ for pattern in dataset_patterns:
208
+ for match in re.finditer(pattern, text, re.IGNORECASE):
209
+ dataset = match.group(1).strip()
210
+ if dataset and dataset.lower() not in ["this", "these", "those"]:
211
+ datasets.append(dataset)
212
+
213
+ return {"datasets": list(set(datasets))} if datasets else {}
214
+
215
+ def _extract_evaluation_results(self, text: str) -> Dict[str, Any]:
216
+ """Extract evaluation results from text."""
217
+ results = {}
218
+
219
+ # Extract accuracy
220
+ accuracy_match = re.search(
221
+ r"accuracy(?:\s*:\s*|\s+of\s+|\s+is\s+)(\d+(?:\.\d+)?)\s*%?",
222
+ text,
223
+ re.IGNORECASE,
224
+ )
225
+ if accuracy_match:
226
+ results["accuracy"] = float(accuracy_match.group(1))
227
+
228
+ # Extract F1 score
229
+ f1_match = re.search(
230
+ r"f1(?:\s*[\-_]?score)?(?:\s*:\s*|\s+of\s+|\s+is\s+)(\d+(?:\.\d+)?)",
231
+ text,
232
+ re.IGNORECASE,
233
+ )
234
+ if f1_match:
235
+ results["f1"] = float(f1_match.group(1))
236
+
237
+ # Extract precision
238
+ precision_match = re.search(
239
+ r"precision(?:\s*:\s*|\s+of\s+|\s+is\s+)(\d+(?:\.\d+)?)",
240
+ text,
241
+ re.IGNORECASE,
242
+ )
243
+ if precision_match:
244
+ results["precision"] = float(precision_match.group(1))
245
+
246
+ # Extract recall
247
+ recall_match = re.search(
248
+ r"recall(?:\s*:\s*|\s+of\s+|\s+is\s+)(\d+(?:\.\d+)?)",
249
+ text,
250
+ re.IGNORECASE,
251
+ )
252
+ if recall_match:
253
+ results["recall"] = float(recall_match.group(1))
254
+
255
+ return {"evaluation_results": results} if results else {}
256
+
257
+ def _extract_section(self, text: str, section_names: List[str]) -> Optional[str]:
258
+ """
259
+ Extract a section from the text based on section names.
260
+
261
+ Args:
262
+ text: The text to extract from
263
+ section_names: Possible names for the section
264
+
265
+ Returns:
266
+ The extracted section text, or None if not found
267
+ """
268
+ # Create pattern to match section headers
269
+ header_pattern = r"(?:^|\n)(?:#+\s*|[0-9]+\.\s*|[A-Z\s]+:\s*)(?:{})(?:\s*:)?(?:\s*\n|\s*$)".format(
270
+ "|".join(section_names)
271
+ )
272
+
273
+ # Find all section headers
274
+ headers = list(re.finditer(header_pattern, text, re.IGNORECASE))
275
+
276
+ for i, match in enumerate(headers):
277
+ start = match.end()
278
+
279
+ # Find the end of the section (next header or end of text)
280
+ if i < len(headers) - 1:
281
+ end = headers[i + 1].start()
282
+ else:
283
+ end = len(text)
284
+
285
+ # Extract the section content
286
+ section = text[start:end].strip()
287
+
288
+ if section:
289
+ return section
290
+
291
+ return None
292
+
293
+
294
+ class MetadataExtractor:
295
+ """
296
+ Metadata extractor that combines inference model and fallback extraction.
297
+ """
298
+
299
+ def __init__(
300
+ self,
301
+ inference_url: Optional[str] = None,
302
+ use_inference: bool = True,
303
+ ):
304
+ """
305
+ Initialize the metadata extractor.
306
+
307
+ Args:
308
+ inference_url: URL of the inference model service
309
+ use_inference: Whether to use the inference model
310
+ """
311
+ self.use_inference = use_inference and inference_url is not None
312
+ self.inference_client = InferenceModelClient(inference_url) if self.use_inference else None
313
+ self.fallback_extractor = FallbackExtractor()
314
+
315
+ def extract_metadata(
316
+ self,
317
+ model_card_text: str,
318
+ structured_metadata: Optional[Dict[str, Any]] = None,
319
+ fields: Optional[List[str]] = None,
320
+ ) -> Dict[str, Any]:
321
+ """
322
+ Extract metadata from model card text.
323
+
324
+ Args:
325
+ model_card_text: The text content of the model card
326
+ structured_metadata: Optional structured metadata to provide context
327
+ fields: Optional list of specific fields to extract
328
+
329
+ Returns:
330
+ Extracted metadata as a dictionary
331
+ """
332
+ metadata = {}
333
+
334
+ # Try inference model first if enabled
335
+ if self.use_inference and self.inference_client:
336
+ try:
337
+ inference_metadata = self.inference_client.extract_metadata(
338
+ model_card_text, structured_metadata, fields
339
+ )
340
+ metadata.update(inference_metadata)
341
+ except Exception as e:
342
+ logger.error(f"Inference model extraction failed: {e}")
343
+
344
+ # Use fallback extractor for missing fields or if inference failed
345
+ if not metadata or (fields and not all(field in metadata for field in fields)):
346
+ missing_fields = fields if fields else None
347
+ if fields:
348
+ missing_fields = [field for field in fields if field not in metadata]
349
+
350
+ fallback_metadata = self.fallback_extractor.extract_metadata(
351
+ model_card_text, structured_metadata, missing_fields
352
+ )
353
+
354
+ # Only update with fallback data for fields that weren't extracted by inference
355
+ for key, value in fallback_metadata.items():
356
+ if key not in metadata or not metadata[key]:
357
+ metadata[key] = value
358
+
359
+ return metadata
src/aibom_generator/inference_model.py ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Inference model implementation for metadata extraction from model cards.
3
+
4
+ This module provides a fine-tuned model for extracting structured metadata
5
+ from unstructured text in Hugging Face model cards.
6
+ """
7
+
8
+ import json
9
+ import logging
10
+ import os
11
+ import re
12
+ import torch
13
+ from typing import Dict, List, Optional, Any, Union
14
+
15
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
16
+ from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
17
+
18
+ logger = logging.getLogger(__name__)
19
+
20
+
21
+ class ModelCardExtractor:
22
+ """
23
+ Fine-tuned model for extracting metadata from model card text.
24
+ """
25
+
26
+ def __init__(
27
+ self,
28
+ model_name: str = "distilbert-base-uncased",
29
+ device: str = "cpu",
30
+ max_length: int = 512,
31
+ cache_dir: Optional[str] = None,
32
+ ):
33
+ """
34
+ Initialize the model card extractor.
35
+
36
+ Args:
37
+ model_name: Name or path of the pre-trained model
38
+ device: Device to run the model on ('cpu' or 'cuda')
39
+ max_length: Maximum sequence length for tokenization
40
+ cache_dir: Directory to cache models
41
+ """
42
+ self.model_name = model_name
43
+ self.device = device
44
+ self.max_length = max_length
45
+ self.cache_dir = cache_dir
46
+
47
+ # Load tokenizer and model
48
+ self.tokenizer = None
49
+ self.model = None
50
+
51
+ # Initialize extraction pipelines
52
+ self.section_classifier = None
53
+ self.metadata_extractor = None
54
+
55
+ # Load models
56
+ self._load_models()
57
+
58
+ def _load_models(self):
59
+ """Load the required models for extraction."""
60
+ try:
61
+ # Load section classifier
62
+ logger.info(f"Loading section classifier model: {self.model_name}")
63
+ self.tokenizer = AutoTokenizer.from_pretrained(
64
+ self.model_name,
65
+ cache_dir=self.cache_dir,
66
+ )
67
+ self.model = AutoModelForSequenceClassification.from_pretrained(
68
+ self.model_name,
69
+ cache_dir=self.cache_dir,
70
+ )
71
+ self.model.to(self.device)
72
+
73
+ # Create section classification pipeline
74
+ self.section_classifier = pipeline(
75
+ "text-classification",
76
+ model=self.model,
77
+ tokenizer=self.tokenizer,
78
+ device=0 if self.device == "cuda" else -1,
79
+ )
80
+
81
+ # For demonstration purposes, we'll use a T5-based model for extraction
82
+ # In a real implementation, this would be a fine-tuned model specific to the task
83
+ logger.info("Loading metadata extraction model")
84
+ extraction_model_name = "t5-small" # Placeholder for fine-tuned model
85
+ self.extraction_tokenizer = T5Tokenizer.from_pretrained(
86
+ extraction_model_name,
87
+ cache_dir=self.cache_dir,
88
+ )
89
+ self.extraction_model = AutoModelForSeq2SeqLM.from_pretrained(
90
+ extraction_model_name,
91
+ cache_dir=self.cache_dir,
92
+ )
93
+ self.extraction_model.to(self.device)
94
+
95
+ logger.info("Models loaded successfully")
96
+ except Exception as e:
97
+ logger.error(f"Error loading models: {e}")
98
+ raise
99
+
100
+ def extract_metadata(
101
+ self,
102
+ text: str,
103
+ fields: Optional[List[str]] = None,
104
+ ) -> Dict[str, Any]:
105
+ """
106
+ Extract metadata from model card text.
107
+
108
+ Args:
109
+ text: The model card text
110
+ fields: Optional list of specific fields to extract
111
+
112
+ Returns:
113
+ Extracted metadata as a dictionary
114
+ """
115
+ # Split text into sections
116
+ sections = self._split_into_sections(text)
117
+
118
+ # Classify sections
119
+ classified_sections = self._classify_sections(sections)
120
+
121
+ # Extract metadata from each section
122
+ metadata = {}
123
+ for section_type, section_text in classified_sections.items():
124
+ if fields and section_type not in fields:
125
+ continue
126
+
127
+ extracted = self._extract_from_section(section_type, section_text)
128
+ if extracted:
129
+ metadata[section_type] = extracted
130
+
131
+ return metadata
132
+
133
+ def _split_into_sections(self, text: str) -> List[Dict[str, str]]:
134
+ """
135
+ Split the model card text into sections.
136
+
137
+ Args:
138
+ text: The model card text
139
+
140
+ Returns:
141
+ List of sections with title and content
142
+ """
143
+ # Simple section splitting based on headers
144
+ # In a real implementation, this would be more sophisticated
145
+ sections = []
146
+
147
+ # Match markdown headers (# Header, ## Header, etc.)
148
+ header_pattern = r"(?:^|\n)(#+)\s+(.*?)(?:\n|$)"
149
+
150
+ # Find all headers
151
+ headers = list(re.finditer(header_pattern, text))
152
+
153
+ for i, match in enumerate(headers):
154
+ header_level = len(match.group(1))
155
+ header_text = match.group(2).strip()
156
+
157
+ start = match.end()
158
+
159
+ # Find the end of the section (next header or end of text)
160
+ if i < len(headers) - 1:
161
+ end = headers[i + 1].start()
162
+ else:
163
+ end = len(text)
164
+
165
+ # Extract the section content
166
+ content = text[start:end].strip()
167
+
168
+ sections.append({
169
+ "title": header_text,
170
+ "level": header_level,
171
+ "content": content,
172
+ })
173
+
174
+ # If no sections were found, treat the entire text as one section
175
+ if not sections:
176
+ sections.append({
177
+ "title": "Main",
178
+ "level": 1,
179
+ "content": text.strip(),
180
+ })
181
+
182
+ return sections
183
+
184
+ def _classify_sections(self, sections: List[Dict[str, str]]) -> Dict[str, str]:
185
+ """
186
+ Classify sections into metadata categories.
187
+
188
+ Args:
189
+ sections: List of sections with title and content
190
+
191
+ Returns:
192
+ Dictionary mapping section types to section content
193
+ """
194
+ classified = {}
195
+
196
+ # Map common section titles to metadata fields
197
+ title_mappings = {
198
+ "model description": "description",
199
+ "description": "description",
200
+ "model details": "model_parameters",
201
+ "model architecture": "model_parameters",
202
+ "parameters": "model_parameters",
203
+ "training data": "datasets",
204
+ "dataset": "datasets",
205
+ "datasets": "datasets",
206
+ "training": "training_procedure",
207
+ "evaluation": "evaluation_results",
208
+ "results": "evaluation_results",
209
+ "performance": "evaluation_results",
210
+ "metrics": "evaluation_results",
211
+ "limitations": "limitations",
212
+ "biases": "ethical_considerations",
213
+ "bias": "ethical_considerations",
214
+ "ethical considerations": "ethical_considerations",
215
+ "ethics": "ethical_considerations",
216
+ "risks": "ethical_considerations",
217
+ "license": "license",
218
+ "citation": "citation",
219
+ "references": "citation",
220
+ }
221
+
222
+ for section in sections:
223
+ title = section["title"].lower()
224
+ content = section["content"]
225
+
226
+ # Check for direct title matches
227
+ matched = False
228
+ for key, value in title_mappings.items():
229
+ if key in title:
230
+ if value not in classified:
231
+ classified[value] = content
232
+ else:
233
+ classified[value] += "\n\n" + content
234
+ matched = True
235
+ break
236
+
237
+ # If no match by title, use the classifier
238
+ if not matched and self.section_classifier and len(content.split()) > 5:
239
+ try:
240
+ # This is a placeholder for actual classification
241
+ # In a real implementation, this would use the fine-tuned classifier
242
+ section_type = self._classify_text(content)
243
+ if section_type and section_type not in classified:
244
+ classified[section_type] = content
245
+ elif section_type:
246
+ classified[section_type] += "\n\n" + content
247
+ except Exception as e:
248
+ logger.error(f"Error classifying section: {e}")
249
+
250
+ return classified
251
+
252
+ def _classify_text(self, text: str) -> Optional[str]:
253
+ """
254
+ Classify text into a metadata category.
255
+
256
+ Args:
257
+ text: The text to classify
258
+
259
+ Returns:
260
+ Metadata category or None if classification fails
261
+ """
262
+ # This is a placeholder for actual classification
263
+ # In a real implementation, this would use the fine-tuned classifier
264
+
265
+ # Simple keyword-based classification for demonstration
266
+ keywords = {
267
+ "description": ["is a", "this model", "based on", "pretrained"],
268
+ "model_parameters": ["parameters", "layers", "hidden", "dimension", "architecture"],
269
+ "datasets": ["dataset", "corpus", "trained on", "fine-tuned on"],
270
+ "evaluation_results": ["accuracy", "f1", "precision", "recall", "performance"],
271
+ "limitations": ["limitation", "limited", "does not", "cannot", "fails to"],
272
+ "ethical_considerations": ["bias", "ethical", "fairness", "gender", "race"],
273
+ }
274
+
275
+ # Count keyword occurrences
276
+ counts = {category: 0 for category in keywords}
277
+ for category, words in keywords.items():
278
+ for word in words:
279
+ counts[category] += len(re.findall(r'\b' + re.escape(word) + r'\b', text.lower()))
280
+
281
+ # Return the category with the most keyword matches
282
+ if counts:
283
+ max_category = max(counts.items(), key=lambda x: x[1])
284
+ if max_category[1] > 0:
285
+ return max_category[0]
286
+
287
+ return None
288
+
289
+ def _extract_from_section(self, section_type: str, text: str) -> Any:
290
+ """
291
+ Extract structured metadata from a section.
292
+
293
+ Args:
294
+ section_type: The type of section
295
+ text: The section text
296
+
297
+ Returns:
298
+ Extracted metadata
299
+ """
300
+ # This is a placeholder for actual extraction
301
+ # In a real implementation, this would use the fine-tuned extraction model
302
+
303
+ if section_type == "description":
304
+ # Simply return the text for description
305
+ return text.strip()
306
+
307
+ elif section_type == "model_parameters":
308
+ # Extract model parameters using regex
309
+ params = {}
310
+
311
+ # Extract architecture
312
+ arch_match = re.search(r'(?:architecture|model type|based on)[:\s]+([A-Za-z0-9\-]+)', text, re.IGNORECASE)
313
+ if arch_match:
314
+ params["architecture"] = arch_match.group(1).strip()
315
+
316
+ # Extract parameter count
317
+ param_match = re.search(r'(\d+(?:\.\d+)?)\s*(?:B|M|K)?\s*(?:billion|million|thousand)?\s*parameters', text, re.IGNORECASE)
318
+ if param_match:
319
+ params["parameter_count"] = param_match.group(1).strip()
320
+
321
+ return params
322
+
323
+ elif section_type == "datasets":
324
+ # Extract dataset names
325
+ datasets = []
326
+ dataset_patterns = [
327
+ r'trained on\s+(?:the\s+)?([A-Za-z0-9\-\s]+)(?:\s+dataset)?',
328
+ r'dataset[:\s]+([A-Za-z0-9\-\s]+)',
329
+ r'using\s+(?:the\s+)?([A-Za-z0-9\-\s]+)(?:\s+dataset)',
330
+ ]
331
+
332
+ for pattern in dataset_patterns:
333
+ for match in re.finditer(pattern, text, re.IGNORECASE):
334
+ dataset = match.group(1).strip()
335
+ if dataset and dataset.lower() not in ["this", "these", "those"]:
336
+ datasets.append(dataset)
337
+
338
+ return list(set(datasets))
339
+
340
+ elif section_type == "evaluation_results":
341
+ # Extract evaluation metrics
342
+ results = {}
343
+
344
+ # Extract accuracy
345
+ acc_match = re.search(r'accuracy[:\s]+(\d+(?:\.\d+)?)\s*%?', text, re.IGNORECASE)
346
+ if acc_match:
347
+ results["accuracy"] = float(acc_match.group(1))
348
+
349
+ # Extract F1 score
350
+ f1_match = re.search(r'f1(?:\s*[\-_]?score)?[:\s]+(\d+(?:\.\d+)?)', text, re.IGNORECASE)
351
+ if f1_match:
352
+ results["f1"] = float(f1_match.group(1))
353
+
354
+ # Extract precision
355
+ prec_match = re.search(r'precision[:\s]+(\d+(?:\.\d+)?)', text, re.IGNORECASE)
356
+ if prec_match:
357
+ results["precision"] = float(prec_match.group(1))
358
+
359
+ # Extract recall
360
+ recall_match = re.search(r'recall[:\s]+(\d+(?:\.\d+)?)', text, re.IGNORECASE)
361
+ if recall_match:
362
+ results["recall"] = float(recall_match.group(1))
363
+
364
+ return results
365
+
366
+ elif section_type == "limitations":
367
+ # Simply return the text for limitations
368
+ return text.strip()
369
+
370
+ elif section_type == "ethical_considerations":
371
+ # Simply return the text for ethical considerations
372
+ return text.strip()
373
+
374
+ elif section_type == "license":
375
+ # Extract license information
376
+ license_match = re.search(r'(?:license|licensing)[:\s]+([A-Za-z0-9\-\s]+)', text, re.IGNORECASE)
377
+ if license_match:
378
+ return license_match.group(1).strip()
379
+ return text.strip()
380
+
381
+ elif section_type == "citation":
382
+ # Simply return the text for citation
383
+ return text.strip()
384
+
385
+ # Default case
386
+ return text.strip()
387
+
388
+
389
+ class InferenceModelServer:
390
+ """
391
+ Server for the inference model.
392
+
393
+ This class provides a server for the inference model that can be deployed
394
+ as a standalone service with a REST API.
395
+ """
396
+
397
+ def __init__(
398
+ self,
399
+ model_name: str = "distilbert-base-uncased",
400
+ device: str = "cpu",
401
+ cache_dir: Optional[str] = None,
402
+ ):
403
+ """
404
+ Initialize the inference model server.
405
+
406
+ Args:
407
+ model_name: Name or path of the pre-trained model
408
+ device: Device to run the model on ('cpu' or 'cuda')
409
+ cache_dir: Directory to cache models
410
+ """
411
+ self.extractor = ModelCardExtractor(
412
+ model_name=model_name,
413
+ device=device,
414
+ cache_dir=cache_dir,
415
+ )
416
+
417
+ def extract_metadata(
418
+ self,
419
+ text: str,
420
+ structured_metadata: Optional[Dict[str, Any]] = None,
421
+ fields: Optional[List[str]] = None,
422
+ ) -> Dict[str, Any]:
423
+ """
424
+ Extract metadata from model card text.
425
+
426
+ Args:
427
+ text: The model card text
428
+ structured_metadata: Optional structured metadata to provide context
429
+ fields: Optional list of specific fields to extract
430
+
431
+ Returns:
432
+ Extracted metadata as a dictionary
433
+ """
434
+ try:
435
+ # Extract metadata using the extractor
436
+ metadata = self.extractor.extract_metadata(text, fields)
437
+
438
+ # Enhance with structured metadata if provided
439
+ if structured_metadata:
440
+ # Use structured metadata for fields not extracted
441
+ for key, value in structured_metadata.items():
442
+ if key not in metadata or not metadata[key]:
443
+ metadata[key] = value
444
+
445
+ return {"metadata": metadata, "success": True}
446
+ except Exception as e:
447
+ logger.error(f"Error extracting metadata: {e}")
448
+ return {"metadata": {}, "success": False, "error": str(e)}
449
+
450
+
451
+ def create_app(model_name: str = "distilbert-base-uncased", device: str = "cpu"):
452
+ """
453
+ Create a Flask app for the inference model server.
454
+
455
+ Args:
456
+ model_name: Name or path of the pre-trained model
457
+ device: Device to run the model on ('cpu' or 'cuda')
458
+
459
+ Returns:
460
+ Flask app
461
+ """
462
+ from flask import Flask, request, jsonify
463
+
464
+ app = Flask(__name__)
465
+ server = InferenceModelServer(model_name=model_name, device=device)
466
+
467
+ @app.route("/extract", methods=["POST"])
468
+ def extract():
469
+ data = request.json
470
+ text = data.get("text", "")
471
+ structured_metadata = data.get("structured_metadata", {})
472
+ fields = data.get("fields", [])
473
+
474
+ result = server.extract_metadata(text, structured_metadata, fields)
475
+ return jsonify(result)
476
+
477
+ @app.route("/health", methods=["GET"])
478
+ def health():
479
+ return jsonify({"status": "healthy"})
480
+
481
+ return app
482
+
483
+
484
+ def main():
485
+ """Main entry point for the inference model server."""
486
+ import argparse
487
+
488
+ parser = argparse.ArgumentParser(
489
+ description="Start the inference model server for AIBOM metadata extraction."
490
+ )
491
+
492
+ parser.add_argument(
493
+ "--model",
494
+ help="Name or path of the pre-trained model",
495
+ default="distilbert-base-uncased",
496
+ )
497
+
498
+ parser.add_argument(
499
+ "--device",
500
+ help="Device to run the model on ('cpu' or 'cuda')",
501
+ choices=["cpu", "cuda"],
502
+ default="cpu",
503
+ )
504
+
505
+ parser.add_argument(
506
+ "--host",
507
+ help="Host to bind the server to",
508
+ default="0.0.0.0",
509
+ )
510
+
511
+ parser.add_argument(
512
+ "--port",
513
+ help="Port to bind the server to",
514
+ type=int,
515
+ default=5000,
516
+ )
517
+
518
+ parser.add_argument(
519
+ "--debug",
520
+ help="Enable debug mode",
521
+ action="store_true",
522
+ )
523
+
524
+ args = parser.parse_args()
525
+
526
+ # Create and run the app
527
+ app = create_app(model_name=args.model, device=args.device)
528
+ app.run(host=args.host, port=args.port, debug=args.debug)
529
+
530
+
531
+ if __name__ == "__main__":
532
+ main()
src/aibom_generator/integration.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Integration with the main generator class to use the inference model.
3
+ """
4
+
5
+ import logging
6
+ from typing import Dict, List, Optional, Any
7
+
8
+ from huggingface_hub import ModelCard
9
+
10
+ from aibom_generator.inference import MetadataExtractor
11
+ from aibom_generator.utils import merge_metadata
12
+
13
+ logger = logging.getLogger(__name__)
14
+
15
+
16
+ class InferenceModelIntegration:
17
+ """
18
+ Integration with the inference model for metadata extraction.
19
+ """
20
+
21
+ def __init__(
22
+ self,
23
+ inference_url: Optional[str] = None,
24
+ use_inference: bool = True,
25
+ ):
26
+ """
27
+ Initialize the inference model integration.
28
+
29
+ Args:
30
+ inference_url: URL of the inference model service
31
+ use_inference: Whether to use the inference model
32
+ """
33
+ self.extractor = MetadataExtractor(inference_url, use_inference)
34
+
35
+ def extract_metadata_from_model_card(
36
+ self,
37
+ model_card: ModelCard,
38
+ structured_metadata: Optional[Dict[str, Any]] = None,
39
+ fields: Optional[List[str]] = None,
40
+ ) -> Dict[str, Any]:
41
+ """
42
+ Extract metadata from a model card using the inference model.
43
+
44
+ Args:
45
+ model_card: The ModelCard object
46
+ structured_metadata: Optional structured metadata to provide context
47
+ fields: Optional list of specific fields to extract
48
+
49
+ Returns:
50
+ Extracted metadata as a dictionary
51
+ """
52
+ if not model_card:
53
+ logger.warning("No model card provided for inference extraction")
54
+ return {}
55
+
56
+ # Get the model card text content
57
+ model_card_text = model_card.text if hasattr(model_card, "text") else ""
58
+
59
+ if not model_card_text:
60
+ logger.warning("Model card has no text content for inference extraction")
61
+ return {}
62
+
63
+ # Extract metadata using the extractor
64
+ extracted_metadata = self.extractor.extract_metadata(
65
+ model_card_text, structured_metadata, fields
66
+ )
67
+
68
+ return extracted_metadata
69
+
70
+ def enhance_metadata(
71
+ self,
72
+ structured_metadata: Dict[str, Any],
73
+ model_card: ModelCard,
74
+ ) -> Dict[str, Any]:
75
+ """
76
+ Enhance structured metadata with information extracted from the model card.
77
+
78
+ Args:
79
+ structured_metadata: Structured metadata from API
80
+ model_card: The ModelCard object
81
+
82
+ Returns:
83
+ Enhanced metadata as a dictionary
84
+ """
85
+ # Identify missing fields that could be extracted from unstructured text
86
+ missing_fields = self._identify_missing_fields(structured_metadata)
87
+
88
+ if not missing_fields:
89
+ logger.info("No missing fields to extract from unstructured text")
90
+ return structured_metadata
91
+
92
+ # Extract missing fields from unstructured text
93
+ extracted_metadata = self.extract_metadata_from_model_card(
94
+ model_card, structured_metadata, missing_fields
95
+ )
96
+
97
+ # Merge the extracted metadata with the structured metadata
98
+ # Structured metadata takes precedence
99
+ enhanced_metadata = merge_metadata(structured_metadata, extracted_metadata)
100
+
101
+ return enhanced_metadata
102
+
103
+ def _identify_missing_fields(self, metadata: Dict[str, Any]) -> List[str]:
104
+ """
105
+ Identify fields that are missing or incomplete in the metadata.
106
+
107
+ Args:
108
+ metadata: The metadata to check
109
+
110
+ Returns:
111
+ List of missing field names
112
+ """
113
+ missing_fields = []
114
+
115
+ # Check for missing or empty fields
116
+ important_fields = [
117
+ "description",
118
+ "license",
119
+ "model_parameters",
120
+ "datasets",
121
+ "evaluation_results",
122
+ "limitations",
123
+ "ethical_considerations",
124
+ ]
125
+
126
+ for field in important_fields:
127
+ if field not in metadata or not metadata[field]:
128
+ missing_fields.append(field)
129
+ elif isinstance(metadata[field], dict) and not any(metadata[field].values()):
130
+ missing_fields.append(field)
131
+ elif isinstance(metadata[field], list) and not metadata[field]:
132
+ missing_fields.append(field)
133
+
134
+ return missing_fields
src/aibom_generator/utils.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Utility functions for the AIBOM Generator.
3
+ """
4
+
5
+ import json
6
+ import logging
7
+ import os
8
+ import re
9
+ import uuid
10
+ from typing import Dict, List, Optional, Any, Union
11
+
12
+ logger = logging.getLogger(__name__)
13
+
14
+
15
+ def setup_logging(level=logging.INFO):
16
+ """Set up logging configuration."""
17
+ logging.basicConfig(
18
+ level=level,
19
+ format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
20
+ datefmt="%Y-%m-%d %H:%M:%S",
21
+ )
22
+
23
+
24
+ def ensure_directory(directory_path):
25
+ """Ensure that a directory exists, creating it if necessary."""
26
+ if not os.path.exists(directory_path):
27
+ os.makedirs(directory_path)
28
+ return directory_path
29
+
30
+
31
+ def generate_uuid():
32
+ """Generate a UUID for the AIBOM serialNumber."""
33
+ return str(uuid.uuid4())
34
+
35
+
36
+ def normalize_license_id(license_text):
37
+ """
38
+ Normalize a license string to a SPDX license identifier if possible.
39
+
40
+ Args:
41
+ license_text: The license text to normalize
42
+
43
+ Returns:
44
+ SPDX license identifier or the original text if no match
45
+ """
46
+ # Common license mappings
47
+ license_mappings = {
48
+ "mit": "MIT",
49
+ "apache": "Apache-2.0",
50
+ "apache 2": "Apache-2.0",
51
+ "apache 2.0": "Apache-2.0",
52
+ "apache-2": "Apache-2.0",
53
+ "apache-2.0": "Apache-2.0",
54
+ "gpl": "GPL-3.0-only",
55
+ "gpl-3": "GPL-3.0-only",
56
+ "gpl-3.0": "GPL-3.0-only",
57
+ "gpl3": "GPL-3.0-only",
58
+ "gpl v3": "GPL-3.0-only",
59
+ "gpl-2": "GPL-2.0-only",
60
+ "gpl-2.0": "GPL-2.0-only",
61
+ "gpl2": "GPL-2.0-only",
62
+ "gpl v2": "GPL-2.0-only",
63
+ "lgpl": "LGPL-3.0-only",
64
+ "lgpl-3": "LGPL-3.0-only",
65
+ "lgpl-3.0": "LGPL-3.0-only",
66
+ "bsd": "BSD-3-Clause",
67
+ "bsd-3": "BSD-3-Clause",
68
+ "bsd-3-clause": "BSD-3-Clause",
69
+ "bsd-2": "BSD-2-Clause",
70
+ "bsd-2-clause": "BSD-2-Clause",
71
+ "cc": "CC-BY-4.0",
72
+ "cc-by": "CC-BY-4.0",
73
+ "cc-by-4.0": "CC-BY-4.0",
74
+ "cc-by-sa": "CC-BY-SA-4.0",
75
+ "cc-by-sa-4.0": "CC-BY-SA-4.0",
76
+ "cc-by-nc": "CC-BY-NC-4.0",
77
+ "cc-by-nc-4.0": "CC-BY-NC-4.0",
78
+ "cc0": "CC0-1.0",
79
+ "cc0-1.0": "CC0-1.0",
80
+ "public domain": "CC0-1.0",
81
+ "unlicense": "Unlicense",
82
+ "proprietary": "NONE",
83
+ "commercial": "NONE",
84
+ }
85
+
86
+ if not license_text:
87
+ return None
88
+
89
+ # Normalize to lowercase and remove punctuation
90
+ normalized = re.sub(r'[^\w\s-]', '', license_text.lower())
91
+
92
+ # Check for direct matches
93
+ if normalized in license_mappings:
94
+ return license_mappings[normalized]
95
+
96
+ # Check for partial matches
97
+ for key, value in license_mappings.items():
98
+ if key in normalized:
99
+ return value
100
+
101
+ # Return original if no match
102
+ return license_text
103
+
104
+
105
+ def calculate_completeness_score(aibom: Dict[str, Any]) -> int:
106
+ """
107
+ Calculate a completeness score for the AIBOM.
108
+
109
+ Args:
110
+ aibom: The AIBOM dictionary
111
+
112
+ Returns:
113
+ Completeness score (0-100)
114
+ """
115
+ score = 0
116
+ max_score = 100
117
+
118
+ # Define scoring weights for different sections
119
+ weights = {
120
+ "required_fields": 20,
121
+ "metadata": 20,
122
+ "component_basic": 20,
123
+ "component_model_card": 30,
124
+ "external_references": 10,
125
+ }
126
+
127
+ # Check required fields (20%)
128
+ required_fields = ["bomFormat", "specVersion", "serialNumber", "version"]
129
+ required_score = sum(1 for field in required_fields if field in aibom)
130
+ score += (required_score / len(required_fields)) * weights["required_fields"]
131
+
132
+ # Check metadata (20%)
133
+ if "metadata" in aibom:
134
+ metadata = aibom["metadata"]
135
+ metadata_fields = ["timestamp", "tools", "authors", "component"]
136
+ metadata_score = sum(1 for field in metadata_fields if field in metadata)
137
+ score += (metadata_score / len(metadata_fields)) * weights["metadata"]
138
+
139
+ # Check component basic info (20%)
140
+ if "components" in aibom and aibom["components"]:
141
+ component = aibom["components"][0]
142
+ component_fields = ["type", "name", "bom-ref", "purl", "description", "licenses"]
143
+ component_score = sum(1 for field in component_fields if field in component)
144
+ score += (component_score / len(component_fields)) * weights["component_basic"]
145
+
146
+ # Check model card (30%)
147
+ if "modelCard" in component:
148
+ model_card = component["modelCard"]
149
+ model_card_fields = ["modelParameters", "quantitativeAnalysis", "considerations"]
150
+ model_card_score = sum(1 for field in model_card_fields if field in model_card)
151
+ score += (model_card_score / len(model_card_fields)) * weights["component_model_card"]
152
+
153
+ # Check external references (10%)
154
+ if "externalReferences" in aibom and aibom["externalReferences"]:
155
+ score += weights["external_references"]
156
+
157
+ return round(score)
158
+
159
+
160
+ def merge_metadata(primary: Dict[str, Any], secondary: Dict[str, Any]) -> Dict[str, Any]:
161
+ """
162
+ Merge two metadata dictionaries, giving priority to the primary dictionary.
163
+
164
+ Args:
165
+ primary: Primary metadata dictionary
166
+ secondary: Secondary metadata dictionary
167
+
168
+ Returns:
169
+ Merged metadata dictionary
170
+ """
171
+ result = secondary.copy()
172
+
173
+ for key, value in primary.items():
174
+ if value is not None:
175
+ if key in result and isinstance(value, dict) and isinstance(result[key], dict):
176
+ result[key] = merge_metadata(value, result[key])
177
+ else:
178
+ result[key] = value
179
+
180
+ return result
181
+
182
+
183
+ def extract_model_id_parts(model_id: str) -> Dict[str, str]:
184
+ """
185
+ Extract parts from a Hugging Face model ID.
186
+
187
+ Args:
188
+ model_id: Hugging Face model ID (e.g., "google/bert-base-uncased")
189
+
190
+ Returns:
191
+ Dictionary with parts (owner, name)
192
+ """
193
+ parts = model_id.split("/")
194
+
195
+ if len(parts) == 1:
196
+ return {
197
+ "owner": None,
198
+ "name": parts[0],
199
+ }
200
+ else:
201
+ return {
202
+ "owner": parts[0],
203
+ "name": "/".join(parts[1:]),
204
+ }
205
+
206
+
207
+ def create_purl(model_id: str) -> str:
208
+ """
209
+ Create a Package URL (purl) for a Hugging Face model.
210
+
211
+ Args:
212
+ model_id: Hugging Face model ID
213
+
214
+ Returns:
215
+ Package URL string
216
+ """
217
+ parts = extract_model_id_parts(model_id)
218
+
219
+ if parts["owner"]:
220
+ return f"pkg:huggingface/{parts['owner']}/{parts['name']}"
221
+ else:
222
+ return f"pkg:huggingface/{parts['name']}"
src/aibom_generator/worker.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Background worker for the AIBOM Generator.
3
+
4
+ This module provides a background worker that can be used to process
5
+ AIBOM generation tasks asynchronously.
6
+ """
7
+
8
+ import logging
9
+ import os
10
+ import time
11
+ from typing import Dict, List, Optional, Any
12
+
13
+ from aibom_generator.generator import AIBOMGenerator
14
+ from aibom_generator.utils import setup_logging, calculate_completeness_score
15
+
16
+ # Set up logging
17
+ setup_logging()
18
+ logger = logging.getLogger(__name__)
19
+
20
+
21
+ class Worker:
22
+ """
23
+ Background worker for AIBOM generation.
24
+ """
25
+
26
+ def __init__(
27
+ self,
28
+ poll_interval: int = 60,
29
+ hf_token: Optional[str] = None,
30
+ inference_model_url: Optional[str] = None,
31
+ use_inference: bool = True,
32
+ cache_dir: Optional[str] = None,
33
+ ):
34
+ """
35
+ Initialize the worker.
36
+
37
+ Args:
38
+ poll_interval: Interval in seconds to poll for new tasks
39
+ hf_token: Hugging Face API token
40
+ inference_model_url: URL of the inference model service
41
+ use_inference: Whether to use the inference model
42
+ cache_dir: Directory to cache API responses and model cards
43
+ """
44
+ self.poll_interval = poll_interval
45
+ self.generator = AIBOMGenerator(
46
+ hf_token=hf_token,
47
+ inference_model_url=inference_model_url,
48
+ use_inference=use_inference,
49
+ cache_dir=cache_dir,
50
+ )
51
+ self.running = False
52
+
53
+ def start(self):
54
+ """Start the worker."""
55
+ self.running = True
56
+ logger.info("Worker started")
57
+
58
+ try:
59
+ while self.running:
60
+ # Process tasks
61
+ self._process_tasks()
62
+
63
+ # Sleep for poll interval
64
+ time.sleep(self.poll_interval)
65
+ except KeyboardInterrupt:
66
+ logger.info("Worker stopped by user")
67
+ except Exception as e:
68
+ logger.error(f"Worker error: {e}")
69
+ finally:
70
+ self.running = False
71
+ logger.info("Worker stopped")
72
+
73
+ def stop(self):
74
+ """Stop the worker."""
75
+ self.running = False
76
+
77
+ def _process_tasks(self):
78
+ """Process pending tasks."""
79
+ # This is a placeholder for actual task processing
80
+ # In a real implementation, this would fetch tasks from a queue or database
81
+ logger.debug("Processing tasks")
82
+
83
+ # Simulate task processing
84
+ # In a real implementation, this would process actual tasks
85
+ pass
86
+
87
+
88
+ def main():
89
+ """Main entry point for the worker."""
90
+ # Create and start the worker
91
+ worker = Worker(
92
+ poll_interval=int(os.environ.get("AIBOM_POLL_INTERVAL", 60)),
93
+ hf_token=os.environ.get("HF_TOKEN"),
94
+ inference_model_url=os.environ.get("AIBOM_INFERENCE_URL"),
95
+ use_inference=os.environ.get("AIBOM_USE_INFERENCE", "true").lower() == "true",
96
+ cache_dir=os.environ.get("AIBOM_CACHE_DIR"),
97
+ )
98
+
99
+ worker.start()
100
+
101
+
102
+ if __name__ == "__main__":
103
+ main()