Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer
|
2 |
+
from vllm import LLM, SamplingParams
|
3 |
+
|
4 |
+
# Initialize the tokenizer
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct")
|
6 |
+
|
7 |
+
# Pass the default decoding hyperparameters of Qwen2.5-7B-Instruct
|
8 |
+
# max_tokens is for the maximum length for generation.
|
9 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=512)
|
10 |
+
|
11 |
+
# Input the model name or path. Can be GPTQ or AWQ models.
|
12 |
+
llm = LLM(model="Qwen/Qwen2.5-7B-Instruct")
|
13 |
+
|
14 |
+
# Prepare your prompts
|
15 |
+
prompt = "Tell me something about large language models."
|
16 |
+
messages = [
|
17 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
18 |
+
{"role": "user", "content": prompt}
|
19 |
+
]
|
20 |
+
text = tokenizer.apply_chat_template(
|
21 |
+
messages,
|
22 |
+
tokenize=False,
|
23 |
+
add_generation_prompt=True
|
24 |
+
)
|
25 |
+
|
26 |
+
# generate outputs
|
27 |
+
outputs = llm.generate([text], sampling_params)
|
28 |
+
|
29 |
+
# Print the outputs.
|
30 |
+
for output in outputs:
|
31 |
+
prompt = output.prompt
|
32 |
+
generated_text = output.outputs[0].text
|
33 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|