from transformers import AutoTokenizer from vllm import LLM, SamplingParams # Initialize the tokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct") # Pass the default decoding hyperparameters of Qwen2.5-7B-Instruct # max_tokens is for the maximum length for generation. sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=512) # Input the model name or path. Can be GPTQ or AWQ models. llm = LLM(model="Qwen/Qwen2.5-7B-Instruct") # Prepare your prompts prompt = "Tell me something about large language models." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # generate outputs outputs = llm.generate([text], sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")