File size: 24,570 Bytes
90a8b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import streamlit as st
from src.data import StoreDataLoader
from src.model import Model_Load
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
from sklearn.metrics import mean_absolute_error,mean_squared_error
import numpy as np
import pandas as pd
from src.prediction import test_prediction,val_prediction,create_week_date_featues
import plotly.express as px
#-------------------------------------------------------------
## Load model object
model_obj=Model_Load()
#--------------------------------------------------------------
@st.cache_data
def convert_df(df):
   return df.to_csv(index=False).encode('utf-8')
#-----------------------------------------------------------------
## Title of Page
st.markdown("""
    <div style='text-align: center; margin-top:-70px; margin-bottom: -50px;margin-left: -50px;'>
    <h2 style='font-size: 20px; font-family: Courier New, monospace;
                    letter-spacing: 2px; text-decoration: none;'>
    <img src="https://acis.affineanalytics.co.in/assets/images/logo_small.png" alt="logo" width="70" height="30">
    <span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
                            -webkit-background-clip: text;
                            -webkit-text-fill-color: transparent;
                            text-shadow: none;'>
                    Product Demand Forecasting Dashboard
    </span>
    <span style='font-size: 40%;'>
    <sup style='position: relative; top: 5px; color: #ed4965;'>by Affine</sup>
    </span>
    </h2>
    </div>
    """, unsafe_allow_html=True)
#---------------------------------------------------------------------------------------------------------------------
# select the model(Sidebar)
with st.sidebar:
    st.markdown("""<div style='text-align: left; margin-top:-230px;margin-left:-40px;'>
    <img src="https://affine.ai/wp-content/uploads/2023/05/Affine-Logo.svg" alt="logo" width="300" height="60">
    </div>""", unsafe_allow_html=True)
    option=st.selectbox("Select Model",['TFT','Prophet'])
#------------------------------------------------------------------------------------------------------------
# TFT 
if option=='TFT':
    #--------------------------------------------------------------------------------------------------------
    ## TFT data path and load
    path='data/train.csv'
    obj=StoreDataLoader(path)
    train_dataset,test_dataset,training,validation,earliest_time=obj.tft_data()
    print(f"TRAINING ::START DATE ::{train_dataset['date'].min()} :: END DATE ::{train_dataset['date'].max()}")
    print(f"TESTING ::START DATE ::{test_dataset['date'].min()} :: END DATE ::{test_dataset['date'].max()}")
    list_store=train_dataset['store'].unique()
    list_items=train_dataset['item'].unique()
    #---------------------------------------------------------------------------------------------------------
    try:
        # load the pre trained tft model
        model=model_obj.store_model_load(option)
        with st.sidebar:
            # st.success('Model Loaded successfully', icon="✅")
            # select the store id
            store=st.selectbox("Select Store ID",list_store)
            # select the item id
            item=st.selectbox("Select Product ID",list_items)
    #--------------------------------------------------------------------------------------------------------------
            ## prediction on testing data
            testing_results=test_prediction(model,train_dataset=train_dataset,test_dataset=test_dataset
                            ,earliest_time=earliest_time,store_id=store,item_id=item)
            # find kpi
            rmse=np.around(np.sqrt(mean_squared_error(testing_results['Lead_1'],testing_results['prediction'])),2)
            mae=np.around(mean_absolute_error(testing_results['Lead_1'],testing_results['prediction']),2)
            print(f"TEST DATA  = Item ID : {item} :: MAE : {mae} :: RMSE : {rmse}")
 #--------------------------------------tft future prediction-------------------------------------------           
            final_data=pd.concat([train_dataset,test_dataset])
            consumer_data=final_data.loc[(final_data['store']==store) & (final_data['item']==item)]
            consumer_data.fillna(0,inplace=True)
            date_list=[]
            demand_prediction=[]
            for i in range(30):
                # select last 150 records as an enocer + decoder data
                encoder_data = consumer_data[lambda x: x.days_from_start > x.days_from_start.max() - 150]
                last_data =  consumer_data[lambda x: x.days_from_start == x.days_from_start.max()]

                # prediction date and time
                date_list.append(encoder_data.tail(1).iloc[-1,:]['date'])
                # prediction for the last 30 records
                test_prediction = model.predict(encoder_data,
                                                  mode="prediction",
                                                  trainer_kwargs=dict(accelerator="cpu"),
                                                  return_x=True)
                # create the next day record
                decoder_data = pd.concat(
                    [last_data.assign(date=lambda x: x.date + pd.offsets.DateOffset(i)) for i in range(1, 2)],
                    ignore_index=True,
                )
                # find the hours_from_start & days_from_start
                decoder_data["hours_from_start"] = (decoder_data["date"] - earliest_time).dt.seconds / 60 / 60 + (decoder_data["date"] - earliest_time).dt.days * 24
                decoder_data['hours_from_start'] = decoder_data['hours_from_start'].astype('int')
                decoder_data["hours_from_start"] += encoder_data["hours_from_start"].max() + 1 - decoder_data["hours_from_start"].min()
                # add time index consistent with "data"
                decoder_data["days_from_start"] = (decoder_data["date"] - earliest_time).apply(lambda x:x.days)
                # adding the datetime features
                decoder_data=create_week_date_featues(decoder_data,'date')
                # last timestep predicted record as assume next day actual demand(for more day forecasting)
                decoder_data['sales']=float(test_prediction.output[0][-1])
                # append this prediction into the list
                demand_prediction.append(float(test_prediction.output[0][-1]))
                # update prediction time idx
                decoder_data['time_idx']=int(test_prediction.x['decoder_time_idx'][0][-1])
                # add the next day record into the original data
                consumer_data=pd.concat([consumer_data,decoder_data])
                # fina lag and update
                consumer_data['lag_1']=consumer_data['sales'].shift(1)
                consumer_data['lag_5']=consumer_data['sales'].shift(5)
                # reset the index
                consumer_data=consumer_data.reset_index(drop=True)
            # forecast values for the next 30 days/timesteps
            d2=pd.DataFrame({"date":date_list,"prediction":demand_prediction})[['date','prediction']]
            # update the store and item ids
            d2['store']=store
            d2['item']=item  
#----------------------------TFT and Prophet model KPI----------------------------------------
            with st.sidebar:
                st.markdown(f"""
                            <style>
                            /* Sidebar header style */
                            .sidebar-header {{
                            padding: 1px;
                            background-color: #9966FF;
                            text-align: center;
                            font-size: 13px;
                            font-weight: bold;
                            color: #FFF ;
                            }}
                            </style>

                            <div class="sidebar-header">
                            Models Evalution
                            </div>
                            """,unsafe_allow_html=True)
                st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[7.73,6.17],"Prophet":[7.32,6.01]}).set_index('KPI'),width=300) 
                # d2=pd.DataFrame({"KPI":['RMSE','MAE','RMSE','MAE'],"model":['TFT','TFT','Prophet','Prophet'],"Score":[7.73,6.17,7.32,6.01]})
                # fig = px.bar(d2, x="KPI", y="Score",
                #  color='model', barmode='group',
                #  height=200,width=300,text_auto=True,)
                # st.plotly_chart(fig) 
#------------------------------------Prophet model KPI---------------------------------------------------------
                st.markdown(f"""
                            <style>
                            /* Sidebar header style */
                            .sidebar-header {{
                                padding: 3px;
                                background-color:linear-gradient(45deg, #ed4965, #c05aaf);
                                text-align: center;
                                font-size: 13px;
                                font-weight: bold;
                                color: #FFF ;
                            }}
                            </style>

                            <div class="sidebar-header">
                            KPI :: {item}
                            </div>
                            """,unsafe_allow_html=True)
                st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[rmse,mae]}).set_index('KPI'),width=300)
           
    #--------------------------------------------------------------------------------------------------------------
        # tabs
        tab1,tab2=st.tabs(['📈Forecast Plot','🗃Forecast Table'])
    #------------------------------------------------Tab-1-----------------------------------------------------------
        tab1.markdown("""
                        <div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
                        <h2 style='font-size: 30px; font-family: Palatino, serif;
                        letter-spacing: 2px; text-decoration: none;'>
                        &#x1F4C8;
                        <span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
                              -webkit-background-clip: text;
                              -webkit-text-fill-color: transparent;
                              text-shadow: none;'>
                        Forecast Plot
                        </span>
                        <span style='font-size: 40%;'>
                        <sup style='position: relative; top: 5px; color: #ed4965;'></sup>
                        </span>
                        </h2>
                        </div>
                        """, unsafe_allow_html=True)
        # change dtype on prediction column
        testing_results['prediction']=testing_results['prediction'].apply(lambda x:round(x))
        testing_results['date']=testing_results['date'].dt.date
        d2['prediction']=d2['prediction'].apply(lambda x:round(x))
        d2['date']=d2['date'].dt.date
        # training_data=train_dataset.loc[(train_dataset['store']==store)&(train_dataset['item']==item)][['date','Lead_1']].iloc[-60:,:]
#---------------------------------------------forecast plot---------------------------------------------
        fig = go.Figure([
        # go.Scatter(x=training_data['date'],y=training_data['Lead_1'],name='Train Observed',line=dict(color='rgba(50, 205, 50, 0.7)')),
        #go.Scatter(x=y_train_pred['ds'],y=y_train_pred['yhat'],name='Prophet Pred.(10 Item)',line=dict(color='blue', dash='dot')),
        go.Scatter(x=testing_results['date'], y=testing_results['Lead_1'],name='Observed',line=dict(color='rgba(218, 112, 214, 0.5)')),
        go.Scatter(x=testing_results['date'],y=testing_results['prediction'],name='Historical Forecast',line=dict(color='#9400D3', dash='dash')),
         go.Scatter(x=d2['date'],y=d2['prediction'],name='Future Forecast',line=dict(color='Dark Orange', dash='dot'))])
        fig.update_layout(
        xaxis_title='Date',
        yaxis_title='Order Demand',
        margin=dict(l=0, r=0, t=50, b=0),
        xaxis=dict(title_font=dict(size=20)),
        yaxis=dict(title_font=dict(size=20)))
        fig.update_layout(width=900,height=400)
        tab1.plotly_chart(fig)
    #----------------------------------------------Tab-2------------------------------------------------------------        
        tab2.markdown("""
        <div style='text-align: left; margin-top:-10px;'>
        <h2 style='font-size: 30px; font-family: Palatino, serif;
                        letter-spacing: 2px; text-decoration: none;'>
                        &#x1F4C3;
        <span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
                                -webkit-background-clip: text;
                                -webkit-text-fill-color: transparent;
                                text-shadow: none;'>
                    Forecast Table
        </span>
        <span style='font-size: 40%;'>
        <sup style='position: relative; top: 5px; color: #ed4965;'></sup>
        </span>
        </h2>
        </div>
        """, unsafe_allow_html=True)
        final_r=pd.concat([d2[['date','store','item','prediction']],testing_results[['date','store','item','prediction']]]).sort_values('date').drop_duplicates().reset_index(drop=True)
        csv = convert_df(final_r)
        tab2.dataframe(final_r,width=500)
        tab2.download_button(
                            "Download",
                            csv,
                            "file.csv",
                            "text/csv",
                            key='download-csv'
                            )
    except:
        st.sidebar.error('Model Not Loaded successfully!',icon="🚨")           
        
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

elif option=='Prophet':
    print("prophet")
    #---------------------------------------------------Data----------------------------------------------------
    # Prophet data
    path='data/train.csv'
    obj=StoreDataLoader(path)
    fb_train_data,fb_test_data,item_dummay,store_dummay=obj.fb_data()
    # st.write(fb_train_data.columns)
    # st.write(fb_test_data.columns)
    # print(fb_test_data.columns)
    print(f"TRAINING ::START DATE ::{fb_train_data['ds'].min()} :: END DATE ::{fb_train_data['ds'].max()}")
    print(f"TESTING ::START DATE ::{fb_test_data['ds'].min()} :: END DATE ::{fb_test_data['ds'].max()}")
    train_new=fb_train_data.drop('y',axis=1)
    test_new=fb_test_data.drop('y',axis=1)
    #----------------------------------------------model Load----------------------------------------------------
    try:
        fb_model=model_obj.store_model_load(option)
        # with st.sidebar:
            # st.success('Model Loaded successfully', icon="✅")
    #-------------------------------------select store & item ---------------------------------------------------
        list_items=item_dummay.columns
        list_store=store_dummay.columns
        with st.sidebar:
            store=st.selectbox("Select Store",list_store)
            item=st.selectbox("Select Product",list_items)
        #------------------------------------------prediction---------------------------------------------------------------
        test_prediction=fb_model.predict(test_new.loc[test_new[item]==1])
        train_prediction=fb_model.predict(train_new.loc[train_new[item]==1])

        y_true_test=fb_test_data.loc[fb_test_data[item]==1]
        y_true_train=fb_train_data.loc[fb_train_data[item]==1]

        y_train_pred=train_prediction[['ds','yhat']].iloc[-60:,:]
        y_train_true=y_true_train[['ds','y']].iloc[-60:,:]

        y_test_pred=test_prediction[['ds','yhat']]
        y_test_true=y_true_test[['ds','y']]
        #----------------------------------------KPI---------------------------------------------------------------
        rmse=np.sqrt(mean_squared_error(y_test_true['y'],y_test_pred['yhat']))
        mae=mean_absolute_error(y_test_true['y'],y_test_pred['yhat'])
#---------------------------------future prediction---------------------------------------
        fb_final=pd.concat([fb_train_data,fb_test_data])
        # extract the data for selected store and item
        fb_consumer=fb_final.loc[(fb_final[store]==1) & (fb_final[item]==1)]

        # list of dates and prediction
        date_list=[]
        prediction_list=[]

        # predicting the next 30 days product demand
        for i in range(30):
            # select only date record
            next_prediction=fb_consumer.tail(1).drop('y',axis=1) # drop target of last  01/01/2015 00:00:00
            # predict next timestep demand
            prediction=fb_model.predict(next_prediction) # pass other feature value to the model
            
            # append date and predicted demand
            date_list.append(prediction['ds'][0]) ## append the datetime of prediction
            prediction_list.append(prediction['yhat'][0]) ## append the next timestep prediction
            
            
            #--------------------------next timestep data simulate-------------------------------------------------------------
            last_data =  fb_consumer[lambda x: x.ds == x.ds.max()] # last date present in data
            # next timestep
            decoder_data = pd.concat(
                [last_data.assign(ds=lambda x: x.ds + pd.offsets.DateOffset(i)) for i in range(1, 2)],
                ignore_index=True,
            )
            # update next timestep datetime covariates
            decoder_data=create_week_date_featues(decoder_data,'ds')
            # update last day demand prediction to the here as an actual demand value(using for more future timestep prediction)
            decoder_data['sales']=prediction['yhat'][0] # assume next timestep prediction as actual
            # update this next record into the original data
            fb_consumer=pd.concat([fb_consumer,decoder_data]) # append that next timestep data to into main data
            # find shift of power usage and update into the datset
            fb_consumer['lag_1']=fb_consumer['sales'].shift(1)  
            fb_consumer['lag_5']=fb_consumer['sales'].shift(5)  
            fb_consumer=fb_consumer.reset_index(drop=True)  # reset_index
        future_prediction=pd.DataFrame({"ds":date_list,"yhat":prediction_list})
        future_prediction['store']=store
        future_prediction['item']=item

        with st.sidebar:
            st.markdown(f"""
                        <style>
                        /* Sidebar header style */
                        .sidebar-header {{
                        padding: 1px;
                        background-color: #9966FF;
                        text-align: center;
                        font-size: 13px;
                        font-weight: bold;
                        color: #FFF ;
                        }}
                        </style>

                        <div class="sidebar-header">
                        Models Evalution
                        </div>
                        """,unsafe_allow_html=True)
            st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[7.73,6.17],"Prophet":[7.32,6.01]}).set_index('KPI'),width=300) 
            st.markdown(f"""
            <style>
            /* Sidebar header style */
            .sidebar-header {{
                padding: 3px;
                background-color:linear-gradient(45deg, #ed4965, #c05aaf);
                text-align: center;
                font-size: 13px;
                font-weight: bold;
                color: #FFF ;
            }}
            </style>

            <div class="sidebar-header">
            KPI :: {item}
            </div>
            """,unsafe_allow_html=True)
            
            st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"Prophet":[rmse,mae]}).set_index('KPI'),width=300)
       
        #---------------------------------------Tabs-----------------------------------------------------------------------
        tab1,tab2=st.tabs(['📈Forecast Plot','🗃Forecast Table'])
        #-------------------------------------------Tab-1=Forecast plot---------------------------------------------------
        tab1.markdown("""
        <div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
        <h2 style='font-size: 30px; font-family: Palatino, serif;
                        letter-spacing: 2px; text-decoration: none;'>
                        &#x1F4C8;
        <span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
                                -webkit-background-clip: text;
                                -webkit-text-fill-color: transparent;
                                text-shadow: none;'>
                        Forecast Plot
        </span>
        <span style='font-size: 40%;'>
        <sup style='position: relative; top: 5px; color: #ed4965;'></sup>
        </span>
        </h2>
        </div>
        """, unsafe_allow_html=True)

        ## round fig.
        y_train_true['y']=y_train_true['y'].astype('int')
        y_train_pred['yhat']=y_train_pred['yhat'].astype('int')
        y_test_true['y']=y_test_true['y'].astype('int')
        y_test_pred['yhat']=y_test_pred['yhat'].astype('int')
        future_prediction['yhat']=future_prediction['yhat'].astype('int')
        y_train_true['ds']=y_train_true['ds'].dt.date
        y_train_pred['ds']=y_train_pred['ds'].dt.date
        y_test_true['ds']=y_test_true['ds'].dt.date
        y_test_pred['ds']=y_test_pred['ds'].dt.date
        future_prediction['ds']=future_prediction['ds'].dt.date

        #-----------------------------plot---------------------------------------------------------------------------------------------
        fig = go.Figure([
        # go.Scatter(x=y_train_true['ds'],y=y_train_true['y'],name='Train Observed',line=dict(color='rgba(50, 205, 50, 0.7)' )),
        # go.Scatter(x=y_train_pred['ds'],y=y_train_pred['yhat'],name='Prophet Pred.(10 Item)',line=dict(color='#32CD32', dash='dot')),
        go.Scatter(x=y_test_true['ds'], y=y_test_true['y'],name='Observed',line=dict(color='rgba(218, 112, 214, 0.5)')),
        go.Scatter(x=y_test_pred['ds'],y=y_test_pred['yhat'],name='Historical Forecast',line=dict(color='#9400D3', dash='dash')),
        go.Scatter(x=future_prediction['ds'],y=future_prediction['yhat'],name='Future Forecast',line=dict(color='Dark Orange', dash='dot'))])
        fig.update_layout(
            xaxis_title='Date',
        yaxis_title='Order Demand',
        margin=dict(l=0, r=0, t=50, b=0),
        xaxis=dict(title_font=dict(size=20)),
        yaxis=dict(title_font=dict(size=20)))
        fig.update_layout(width=900,height=400)
        tab1.plotly_chart(fig)
        #----------------------------------------Tab-2------------------------------------------------------------
        results=y_test_pred.reset_index()
        results['store']='store_1'
        results['item']=item
        tab2.markdown("""
        <div style='text-align: left; margin-top:-10px;'>
        <h2 style='font-size: 30px; font-family: Palatino, serif;
                        letter-spacing: 2px; text-decoration: none;'>
                        &#x1F4C3;
        <span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
                                -webkit-background-clip: text;
                                -webkit-text-fill-color: transparent;
                                text-shadow: none;'>
                    Forecast Table
        </span>
        <span style='font-size: 40%;'>
        <sup style='position: relative; top: 5px; color: #ed4965;'></sup>
        </span>
        </h2>
        </div>
        """, unsafe_allow_html=True)
        final_r=pd.concat([future_prediction[['ds','store','item','yhat']],results[['ds','store','item','yhat']]]).sort_values('ds').drop_duplicates().reset_index(drop=True)
        csv = convert_df(final_r)
        tab2.dataframe(final_r,width=500)
        tab2.download_button(
                            "Download",
                            csv,
                            "file.csv",
                            "text/csv",
                            key='download-csv'
                            )
    except:
        st.sidebar.error('Model Not Loaded successfully!',icon="🚨")