Spaces:
Runtime error
Runtime error
File size: 20,310 Bytes
90a8b51 09f3c23 90a8b51 09f3c23 90a8b51 346fd48 90a8b51 09f3c23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import streamlit as st
from src.data import Energy_DataLoader
from src.model import Model_Load
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
from sklearn.metrics import mean_absolute_error,mean_squared_error
import numpy as np
import pandas as pd
from streamlit.components.v1 import html
from src.prediction import test_pred,val_pred
# hide menubar and header
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
## Load model object
model_obj=Model_Load()
path='data/LD2011_2014.txt'
obj=Energy_DataLoader(path)
@st.cache_data
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
st.markdown("""
<div style='text-align: center; margin-top:-70px; margin-bottom: 5px;margin-left: -50px;'>
<h2 style='font-size: 20px; font-family: Courier New, monospace;
letter-spacing: 2px; text-decoration: none;'>
<img src="https://acis.affineanalytics.co.in/assets/images/logo_small.png" alt="logo" width="70" height="30">
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: none;'>
Energy Demand Forecasting Dashboard
</span>
<span style='font-size: 40%;'>
<sup style='position: relative; top: 5px; color: #ed4965;'>by Affine</sup>
</span>
</h2>
</div>
""", unsafe_allow_html=True)
with st.sidebar:
st.markdown("""<div style='text-align: left; margin-top:-200px;margin-left:-40px;'>
<img src="https://affine.ai/wp-content/uploads/2023/05/Affine-Logo.svg" alt="logo" width="300" height="60">
</div>""", unsafe_allow_html=True)
# st.markdown(f"""<style>
# /* Sidebar header style */
# .sidebar-header {{
# padding: 1px;
# background-color: #9966FF;
# text-align: center;
# font-size: 13px;
# font-weight: bold;
# color: #FFF ;
# }}
# </style>
# <div class="sidebar-header" >
# Select Model
# </div>
# """,unsafe_allow_html=True)
option=st.selectbox("Select Model",['TFT','Prophet'])
if option=='TFT':
print("TFT")
## TFT data
train_dataset,test_dataset,training,validation,earliest_time=obj.tft_data()
# st.write(earliest_time)
print(f"TRAINING ::START DATE ::{train_dataset['date'].min()} :: END DATE ::{train_dataset['date'].max()}")
print(f"TESTING ::START DATE ::{test_dataset['date'].min()} :: END DATE ::{test_dataset['date'].max()}")
consumer_list=train_dataset['consumer_id'].unique()
model=model_obj.energy_model_load(option)
with st.sidebar:
# st.success('Model Loaded successfully', icon="✅")
# st.markdown(f"""
# <style>
# /* Sidebar header style */
# .sidebar-header {{
# padding: 1px;
# background-color: #9966FF;
# text-align: center;
# font-size: 13px;
# font-weight: bold;
# color: #FFF ;
# }}
# </style>
# <div class="sidebar-header">
# Select Consumer ID
# </div>
# """,unsafe_allow_html=True)
consumer=st.selectbox("Select Consumer ID",consumer_list)
testing_results=test_pred(model,train_dataset=train_dataset,test_dataset=test_dataset
,consumer_id=consumer)
rmse=np.around(np.sqrt(mean_squared_error(testing_results['Lead_1'],testing_results['prediction'])),2)
mae=np.around(mean_absolute_error(testing_results['Lead_1'],testing_results['prediction']),2)
#-----------------------------------future prediction-----------------------------------------------
final_data=pd.concat([train_dataset,test_dataset])
consumer_data=final_data.loc[final_data['consumer_id']==consumer]
consumer_data.fillna(0,inplace=True)
date_list=[]
demand_prediction=[]
for i in range(24):
encoder_data = consumer_data[lambda x: x.hours_from_start > x.hours_from_start.max() - 192]
last_data = consumer_data[lambda x: x.hours_from_start == x.hours_from_start.max()]
# prediction date and time
date_list.append(encoder_data.tail(1).iloc[-1,:]['date'])
test_prediction = model.predict(encoder_data,
mode="prediction",
trainer_kwargs=dict(accelerator="cpu"),
return_x=True)
decoder_data = pd.concat(
[last_data.assign(date=lambda x: x.date + pd.offsets.Hour(i)) for i in range(1, 2)],
ignore_index=True,
)
decoder_data['hours_from_start']=decoder_data['hours_from_start'].max()+1
decoder_data["days_from_start"] = (decoder_data["date"] - earliest_time).apply(lambda x:x.days)
decoder_data['hour'] = decoder_data['date'].dt.hour
decoder_data['day'] = decoder_data['date'].dt.day
decoder_data['day_of_week'] = decoder_data['date'].dt.dayofweek
decoder_data['month'] = decoder_data['date'].dt.month
decoder_data['power_usage']=float(test_prediction.output[0][-1])
demand_prediction.append(float(test_prediction.output[0][-1]))
decoder_data['time_idx']=int(test_prediction.x['decoder_time_idx'][0][-1])
consumer_data=pd.concat([consumer_data,decoder_data])
consumer_data['lag_1']=consumer_data['power_usage'].shift(1)
consumer_data['lag_5']=consumer_data['power_usage'].shift(5)
consumer_data=consumer_data.reset_index(drop=True)
d2=pd.DataFrame({"date":date_list,"prediction":demand_prediction})[['date','prediction']]
d2['consumer_id']=consumer
print(f"TEST DATA = Consumer ID : {consumer} :: MAE : {mae} :: RMSE : {rmse}")
with st.sidebar:
st.markdown(f"""
<style>
/* Sidebar header style */
.sidebar-header {{
padding: 1px;
background-color: #9966FF;
text-align: center;
font-size: 13px;
font-weight: bold;
color: #FFF ;
}}
</style>
<div class="sidebar-header">
Models Evalution
</div>
""",unsafe_allow_html=True)
# st.write("Models Evalution")
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[8.67,6.48],"Prophet":[12.82,9.79]}).set_index('KPI'),width=300)
st.markdown(f"""
<style>
/* Sidebar header style */
.sidebar-header {{
padding: 1px;
background-color:linear-gradient(45deg, #ed4965, #c05aaf);
text-align: center;
font-size: 13px;
font-weight: bold;
color: #FFF ;
}}
</style>
<div class="sidebar-header">
KPI :: {consumer}
</div>
""",unsafe_allow_html=True)
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[rmse,mae]}).set_index('KPI'),width=300)
#--------------------------------------------------------------------------------------------------------------
# tabs
tab1,tab2=st.tabs(['📈Forecast Plot','🗃Forecast Table'])
#------------------------------------------------Tab-1-----------------------------------------------------------
# tab2.write(testing_results)
tab1.markdown("""
<div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
<h2 style='font-size: 30px; font-family: Palatino, serif;
letter-spacing: 2px; text-decoration: none;'>
📈
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: none;'>
Forecast Plot
</span>
<span style='font-size: 40%;'>
<sup style='position: relative; top: 5px; color: #ed4965;'></sup>
</span>
</h2>
</div>
""", unsafe_allow_html=True)
# testing_results['prediction']=testing_results['prediction'].astype('int')
training_data=train_dataset.loc[(train_dataset['consumer_id']==consumer)][['date','Lead_1']].iloc[-100:,:]
fig = go.Figure([
# go.Scatter(x=training_data['date'],y=training_data['Lead_1'],name='Train Observed',line=dict(color='blue')),
#go.Scatter(x=y_train_pred['ds'],y=y_train_pred['yhat'],name='Prophet Pred.(10 Item)',line=dict(color='blue', dash='dot')),
go.Scatter(x=testing_results['date'], y=testing_results['Lead_1'],name='Observed',line=dict(color='purple')),
go.Scatter(x=testing_results['date'],y=testing_results['prediction'],name='Historical Forecast',line=dict(color='purple', dash='dot')),
go.Scatter(x=d2['date'],y=d2['prediction'],name='Future Forecast',line=dict(color='Dark Orange', dash='dot'))])
fig.update_layout(
xaxis_title='Date',
yaxis_title='Energy Demand',
margin=dict(l=0, r=0, t=50, b=0),
xaxis=dict(title_font=dict(size=20)),
yaxis=dict(title_font=dict(size=20)))
fig.update_layout(width=900,height=400)
tab1.plotly_chart(fig)
#----------------------------------------------Tab-2------------------------------------------------------------
tab2.markdown("""
<div style='text-align: left; margin-top:-10px;'>
<h2 style='font-size: 30px; font-family: Palatino, serif;
letter-spacing: 2px; text-decoration: none;'>
📃
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: none;'>
Forecast Table
</span>
<span style='font-size: 40%;'>
<sup style='position: relative; top: 5px; color: #ed4965;'></sup>
</span>
</h2>
</div>
""", unsafe_allow_html=True)
final_r=pd.concat([d2[['date','consumer_id','prediction']],testing_results[['date','consumer_id','prediction']]]).sort_values('date').reset_index(drop=True)
csv = convert_df(final_r)
tab2.dataframe(final_r,width=500)
tab2.download_button(
"Download",
csv,
"file.csv",
"text/csv",
key='download-csv'
)
# except:
# st.sidebar.error('Model Not Loaded successfully!',icon="🚨")
elif option=='Prophet':
print("prophet")
# Prophet data
fb_train_data,fb_test_data,consumer_dummay=obj.fb_data()
# print('*'*50)
# fb_test_data
# print('*'*50)
print(f"TRAINING ::START DATE ::{fb_train_data['ds'].min()} :: END DATE ::{fb_train_data['ds'].max()}")
print(f"TESTING ::START DATE ::{fb_test_data['ds'].min()} :: END DATE ::{fb_test_data['ds'].max()}")
train_new=fb_train_data.drop('y',axis=1)
test_new=fb_test_data.drop('y',axis=1)
try:
model=model_obj.energy_model_load(option)
# with st.sidebar:
# st.success('Model Loaded successfully.', icon="✅")
except:
st.error('Model Not Loaded successfully!',icon="🚨")
with st.sidebar:
# st.markdown(f"""
# <style>
# /* Sidebar header style */
# .sidebar-header {{
# padding: 2px;
# background-color: #9966FF;
# text-align: center;
# font-size: 8px;
# font-weight: bold;
# color: #FFF ;
# }}
# </style>
# <div class="sidebar-header">
# Select Consumer ID
# </div>
# """,unsafe_allow_html=True)
consumer=st.selectbox("Select Consumer ID",consumer_dummay)
test_prediction=model.predict(test_new.loc[test_new[consumer]==1])
# train_prediction=model.predict(train_new.loc[train_new[consumer]==1])
y_true_test=fb_test_data.loc[fb_test_data[consumer]==1]
y_true_train=fb_train_data.loc[fb_train_data[consumer]==1]
# y_train_pred=train_prediction[['ds','yhat']].iloc[-60:,:]
y_train_true=y_true_train[['ds','y']].iloc[-60:,:]
y_test_pred=test_prediction[['ds','yhat']]
y_test_true=y_true_test[['ds','y']]
fb_final=pd.concat([fb_train_data,fb_test_data])
fb_consumer=fb_final.loc[fb_final[consumer]==1]
date_list=[]
prediction_list=[]
for i in range(24):
next_prediction=fb_consumer.tail(1).drop('y',axis=1) # drop target of last 01/01/2015 00:00:00
# print(next_prediction)
prediction=model.predict(next_prediction) # pass other feature value to the model
# print('*'*20)
# print("DateTime :: ",prediction['ds'][0])
# print("Prediction ::",prediction['yhat'][0])
date_list.append(prediction['ds'][0]) ## append the datetime of prediction
prediction_list.append(prediction['yhat'][0]) ## append the next timestep prediction
last_data = fb_consumer[lambda x: x.ds == x.ds.max()] # last date present in data
#--------------------------next timestep data simulate-------------------------------------------------------------
decoder_data = pd.concat(
[last_data.assign(ds=lambda x: x.ds + pd.offsets.Hour(i)) for i in range(1, 2)],
ignore_index=True,
)
decoder_data['hour'] = decoder_data['ds'].dt.hour
decoder_data['day'] = decoder_data['ds'].dt.day
decoder_data['day_of_week'] = decoder_data['ds'].dt.dayofweek
decoder_data['month'] = decoder_data['ds'].dt.month
decoder_data['power_usage']=prediction['yhat'][0] # assume next timestep prediction as actual
fb_consumer=pd.concat([fb_consumer,decoder_data]) # append that next timestep data to into main data
fb_consumer['lag_1']=fb_consumer['power_usage'].shift(1) # again find shift of power usage and update into the datset
fb_consumer['lag_5']=fb_consumer['power_usage'].shift(5) #
fb_consumer=fb_consumer.reset_index(drop=True)
future_prediction=pd.DataFrame({'ds':date_list,"yhat":prediction_list})
future_prediction['consumer_id']=consumer
tab1,tab2=st.tabs(['📈Forecast Plot','🗃Forecast Table'])
tab1.markdown("""
<div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
<h2 style='font-size: 30px; font-family: Palatino, serif;
letter-spacing: 2px; text-decoration: none;'>
📈
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: none;'>
Forecast Plot
</span>
<span style='font-size: 40%;'>
<sup style='position: relative; top: 5px; color: #ed4965;'></sup>
</span>
</h2>
</div>
""", unsafe_allow_html=True)
y_train_true['y']=y_train_true['y'].astype('float')
# y_train_pred['yhat']=y_train_pred['yhat'].astype('float')
y_test_true['y']=y_test_true['y'].astype('float')
y_test_pred['yhat']=y_test_pred['yhat'].astype('float')
fig = go.Figure([
# go.Scatter(x=y_train_true['ds'],y=y_train_true['y'],name='Train Observed',line=dict(color='blue')),
#go.Scatter(x=y_train_pred['ds'],y=y_train_pred['yhat'],name='Prophet Pred.(10 Consumer)',line=dict(color='blue', dash='dot')),
go.Scatter(x=y_test_true['ds'], y=y_test_true['y'],name='Observed',line=dict(color='purple')),
go.Scatter(x=y_test_pred['ds'],y=y_test_pred['yhat'],name='Historical Forecast',line=dict(color='purple', dash='dot')),
go.Scatter(x=future_prediction['ds'],y=future_prediction['yhat'],name='Future Forecast',line=dict(color='Dark Orange', dash='dot'))
])
fig.update_layout(
xaxis_title='Date',
yaxis_title='Energy Demand',
margin=dict(l=0, r=0, t=50, b=0),
xaxis=dict(title_font=dict(size=20)),
yaxis=dict(title_font=dict(size=20)))
fig.update_layout(width=900,height=400)
tab1.plotly_chart(fig)
rmse=np.sqrt(mean_squared_error(y_test_true['y'],y_test_pred['yhat']))
mae=mean_absolute_error(y_test_true['y'],y_test_pred['yhat'])
with st.sidebar:
st.markdown(f"""
<style>
/* Sidebar header style */
.sidebar-header {{
padding: 1px;
background-color: #9966FF;
text-align: center;
font-size: 13px;
font-weight: bold;
color: #FFF ;
}}
</style>
<div class="sidebar-header">
Models Evalution
</div>
""",unsafe_allow_html=True)
# st.write("Models Evalution")
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[8.67,6.48],"Prophet":[12.82,9.79]}).set_index('KPI'),width=300)
st.markdown(f"""
<style>
/* Sidebar header style */
.sidebar-header {{
padding: 2px;
background-color:linear-gradient(45deg, #ed4965, #c05aaf);
text-align: center;
font-size: 13px;
font-weight: bold;
color: #FFF ;
}}
</style>
<div class="sidebar-header">
KPI :: {consumer}
</div>
""",unsafe_allow_html=True)
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"Prophet":[rmse,mae]}), width=300)
#----------------------------------------
results=y_test_pred.reset_index()
# results['y']=y_test_true['y'].reset_index(drop=True)
results['consumer_id']=consumer
# st.header("Tabular Results")
st.divider()
tab2.markdown("""
<div style='text-align: left; margin-top:-10px;'>
<h2 style='font-size: 30px; font-family: Palatino, serif;
letter-spacing: 2px; text-decoration: none;'>
📃
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: none;'>
Forecast Table
</span>
<span style='font-size: 40%;'>
<sup style='position: relative; top: 5px; color: #ed4965;'></sup>
</span>
</h2>
</div>
""", unsafe_allow_html=True)
final_results=pd.concat([future_prediction[['ds','consumer_id','yhat']],results[['ds','consumer_id','yhat']]]).sort_values('ds').reset_index(drop=True)
csv = convert_df(final_results)
tab2.dataframe(final_results,width=500)
tab2.download_button("Download",
csv,
"file.csv",
"text/csv",
key='download-csv')
|