Spaces:
Runtime error
Runtime error
import streamlit as st | |
from src.data import Energy_DataLoader | |
from src.model import Model_Load | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import plotly.graph_objects as go | |
from sklearn.metrics import mean_absolute_error,mean_squared_error | |
import numpy as np | |
import pandas as pd | |
from streamlit.components.v1 import html | |
from src.prediction import test_pred,val_pred | |
## Load model object | |
model_obj=Model_Load() | |
path='data/LD2011_2014.txt' | |
obj=Energy_DataLoader(path) | |
def convert_df(df): | |
return df.to_csv(index=False).encode('utf-8') | |
st.markdown(""" | |
<div style='text-align: center; margin-top:-70px; margin-bottom: 5px;margin-left: -50px;'> | |
<h2 style='font-size: 20px; font-family: Courier New, monospace; | |
letter-spacing: 2px; text-decoration: none;'> | |
<img src="https://acis.affineanalytics.co.in/assets/images/logo_small.png" alt="logo" width="70" height="30"> | |
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
text-shadow: none;'> | |
Energy Demand Forecasting Dashboard | |
</span> | |
<span style='font-size: 40%;'> | |
<sup style='position: relative; top: 5px; color: #ed4965;'>by Affine</sup> | |
</span> | |
</h2> | |
</div> | |
""", unsafe_allow_html=True) | |
with st.sidebar: | |
st.markdown("""<div style='text-align: left; margin-top:-230px;margin-left:-40px;'> | |
<img src="https://affine.ai/wp-content/uploads/2023/05/Affine-Logo.svg" alt="logo" width="300" height="60"> | |
</div>""", unsafe_allow_html=True) | |
# st.markdown(f"""<style> | |
# /* Sidebar header style */ | |
# .sidebar-header {{ | |
# padding: 1px; | |
# background-color: #9966FF; | |
# text-align: center; | |
# font-size: 13px; | |
# font-weight: bold; | |
# color: #FFF ; | |
# }} | |
# </style> | |
# <div class="sidebar-header" > | |
# Select Model | |
# </div> | |
# """,unsafe_allow_html=True) | |
option=st.selectbox("Select Model",['TFT','Prophet']) | |
if option=='TFT': | |
print("TFT") | |
## TFT data | |
train_dataset,test_dataset,training,validation,earliest_time=obj.tft_data() | |
# st.write(earliest_time) | |
print(f"TRAINING ::START DATE ::{train_dataset['date'].min()} :: END DATE ::{train_dataset['date'].max()}") | |
print(f"TESTING ::START DATE ::{test_dataset['date'].min()} :: END DATE ::{test_dataset['date'].max()}") | |
consumer_list=train_dataset['consumer_id'].unique() | |
model=model_obj.energy_model_load(option) | |
with st.sidebar: | |
# st.success('Model Loaded successfully', icon="✅") | |
# st.markdown(f""" | |
# <style> | |
# /* Sidebar header style */ | |
# .sidebar-header {{ | |
# padding: 1px; | |
# background-color: #9966FF; | |
# text-align: center; | |
# font-size: 13px; | |
# font-weight: bold; | |
# color: #FFF ; | |
# }} | |
# </style> | |
# <div class="sidebar-header"> | |
# Select Consumer ID | |
# </div> | |
# """,unsafe_allow_html=True) | |
consumer=st.selectbox("Select Consumer ID",consumer_list) | |
testing_results=test_pred(model,train_dataset=train_dataset,test_dataset=test_dataset | |
,consumer_id=consumer) | |
rmse=np.around(np.sqrt(mean_squared_error(testing_results['Lead_1'],testing_results['prediction'])),2) | |
mae=np.around(mean_absolute_error(testing_results['Lead_1'],testing_results['prediction']),2) | |
#-----------------------------------future prediction----------------------------------------------- | |
final_data=pd.concat([train_dataset,test_dataset]) | |
consumer_data=final_data.loc[final_data['consumer_id']==consumer] | |
consumer_data.fillna(0,inplace=True) | |
date_list=[] | |
demand_prediction=[] | |
for i in range(24): | |
encoder_data = consumer_data[lambda x: x.hours_from_start > x.hours_from_start.max() - 192] | |
last_data = consumer_data[lambda x: x.hours_from_start == x.hours_from_start.max()] | |
# prediction date and time | |
date_list.append(encoder_data.tail(1).iloc[-1,:]['date']) | |
test_prediction = model.predict(encoder_data, | |
mode="prediction", | |
trainer_kwargs=dict(accelerator="cpu"), | |
return_x=True) | |
decoder_data = pd.concat( | |
[last_data.assign(date=lambda x: x.date + pd.offsets.Hour(i)) for i in range(1, 2)], | |
ignore_index=True, | |
) | |
decoder_data['hours_from_start']=decoder_data['hours_from_start'].max()+1 | |
decoder_data["days_from_start"] = (decoder_data["date"] - earliest_time).apply(lambda x:x.days) | |
decoder_data['hour'] = decoder_data['date'].dt.hour | |
decoder_data['day'] = decoder_data['date'].dt.day | |
decoder_data['day_of_week'] = decoder_data['date'].dt.dayofweek | |
decoder_data['month'] = decoder_data['date'].dt.month | |
decoder_data['power_usage']=float(test_prediction.output[0][-1]) | |
demand_prediction.append(float(test_prediction.output[0][-1])) | |
decoder_data['time_idx']=int(test_prediction.x['decoder_time_idx'][0][-1]) | |
consumer_data=pd.concat([consumer_data,decoder_data]) | |
consumer_data['lag_1']=consumer_data['power_usage'].shift(1) | |
consumer_data['lag_5']=consumer_data['power_usage'].shift(5) | |
consumer_data=consumer_data.reset_index(drop=True) | |
d2=pd.DataFrame({"date":date_list,"prediction":demand_prediction})[['date','prediction']] | |
d2['consumer_id']=consumer | |
print(f"TEST DATA = Consumer ID : {consumer} :: MAE : {mae} :: RMSE : {rmse}") | |
with st.sidebar: | |
st.markdown(f""" | |
<style> | |
/* Sidebar header style */ | |
.sidebar-header {{ | |
padding: 1px; | |
background-color: #9966FF; | |
text-align: center; | |
font-size: 13px; | |
font-weight: bold; | |
color: #FFF ; | |
}} | |
</style> | |
<div class="sidebar-header"> | |
Models Evalution | |
</div> | |
""",unsafe_allow_html=True) | |
# st.write("Models Evalution") | |
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[8.67,6.48],"Prophet":[12.82,9.79]}).set_index('KPI'),width=300) | |
st.markdown(f""" | |
<style> | |
/* Sidebar header style */ | |
.sidebar-header {{ | |
padding: 1px; | |
background-color:linear-gradient(45deg, #ed4965, #c05aaf); | |
text-align: center; | |
font-size: 13px; | |
font-weight: bold; | |
color: #FFF ; | |
}} | |
</style> | |
<div class="sidebar-header"> | |
KPI :: {consumer} | |
</div> | |
""",unsafe_allow_html=True) | |
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[rmse,mae]}).set_index('KPI'),width=300) | |
#-------------------------------------------------------------------------------------------------------------- | |
# tabs | |
tab1,tab2=st.tabs(['📈Forecast Plot','🗃Forecast Table']) | |
#------------------------------------------------Tab-1----------------------------------------------------------- | |
# tab2.write(testing_results) | |
tab1.markdown(""" | |
<div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'> | |
<h2 style='font-size: 30px; font-family: Palatino, serif; | |
letter-spacing: 2px; text-decoration: none;'> | |
📈 | |
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
text-shadow: none;'> | |
Forecast Plot | |
</span> | |
<span style='font-size: 40%;'> | |
<sup style='position: relative; top: 5px; color: #ed4965;'></sup> | |
</span> | |
</h2> | |
</div> | |
""", unsafe_allow_html=True) | |
# testing_results['prediction']=testing_results['prediction'].astype('int') | |
training_data=train_dataset.loc[(train_dataset['consumer_id']==consumer)][['date','Lead_1']].iloc[-100:,:] | |
fig = go.Figure([ | |
# go.Scatter(x=training_data['date'],y=training_data['Lead_1'],name='Train Observed',line=dict(color='blue')), | |
#go.Scatter(x=y_train_pred['ds'],y=y_train_pred['yhat'],name='Prophet Pred.(10 Item)',line=dict(color='blue', dash='dot')), | |
go.Scatter(x=testing_results['date'], y=testing_results['Lead_1'],name='Observed',line=dict(color='purple')), | |
go.Scatter(x=testing_results['date'],y=testing_results['prediction'],name='Historical Forecast',line=dict(color='purple', dash='dot')), | |
go.Scatter(x=d2['date'],y=d2['prediction'],name='Future Forecast',line=dict(color='Dark Orange', dash='dot'))]) | |
fig.update_layout( | |
xaxis_title='Date', | |
yaxis_title='Energy Demand', | |
margin=dict(l=0, r=0, t=50, b=0), | |
xaxis=dict(title_font=dict(size=20)), | |
yaxis=dict(title_font=dict(size=20))) | |
fig.update_layout(width=900,height=400) | |
tab1.plotly_chart(fig) | |
#----------------------------------------------Tab-2------------------------------------------------------------ | |
tab2.markdown(""" | |
<div style='text-align: left; margin-top:-10px;'> | |
<h2 style='font-size: 30px; font-family: Palatino, serif; | |
letter-spacing: 2px; text-decoration: none;'> | |
📃 | |
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
text-shadow: none;'> | |
Forecast Table | |
</span> | |
<span style='font-size: 40%;'> | |
<sup style='position: relative; top: 5px; color: #ed4965;'></sup> | |
</span> | |
</h2> | |
</div> | |
""", unsafe_allow_html=True) | |
final_r=pd.concat([d2[['date','consumer_id','prediction']],testing_results[['date','consumer_id','prediction']]]).sort_values('date').reset_index(drop=True) | |
csv = convert_df(final_r) | |
tab2.dataframe(final_r,width=500) | |
tab2.download_button( | |
"Download", | |
csv, | |
"file.csv", | |
"text/csv", | |
key='download-csv' | |
) | |
# except: | |
# st.sidebar.error('Model Not Loaded successfully!',icon="🚨") | |
elif option=='Prophet': | |
print("prophet") | |
# Prophet data | |
fb_train_data,fb_test_data,consumer_dummay=obj.fb_data() | |
# print('*'*50) | |
# fb_test_data | |
# print('*'*50) | |
print(f"TRAINING ::START DATE ::{fb_train_data['ds'].min()} :: END DATE ::{fb_train_data['ds'].max()}") | |
print(f"TESTING ::START DATE ::{fb_test_data['ds'].min()} :: END DATE ::{fb_test_data['ds'].max()}") | |
train_new=fb_train_data.drop('y',axis=1) | |
test_new=fb_test_data.drop('y',axis=1) | |
try: | |
model=model_obj.energy_model_load(option) | |
# with st.sidebar: | |
# st.success('Model Loaded successfully.', icon="✅") | |
except: | |
st.error('Model Not Loaded successfully!',icon="🚨") | |
with st.sidebar: | |
# st.markdown(f""" | |
# <style> | |
# /* Sidebar header style */ | |
# .sidebar-header {{ | |
# padding: 2px; | |
# background-color: #9966FF; | |
# text-align: center; | |
# font-size: 8px; | |
# font-weight: bold; | |
# color: #FFF ; | |
# }} | |
# </style> | |
# <div class="sidebar-header"> | |
# Select Consumer ID | |
# </div> | |
# """,unsafe_allow_html=True) | |
consumer=st.selectbox("Select Consumer ID",consumer_dummay) | |
test_prediction=model.predict(test_new.loc[test_new[consumer]==1]) | |
# train_prediction=model.predict(train_new.loc[train_new[consumer]==1]) | |
y_true_test=fb_test_data.loc[fb_test_data[consumer]==1] | |
y_true_train=fb_train_data.loc[fb_train_data[consumer]==1] | |
# y_train_pred=train_prediction[['ds','yhat']].iloc[-60:,:] | |
y_train_true=y_true_train[['ds','y']].iloc[-60:,:] | |
y_test_pred=test_prediction[['ds','yhat']] | |
y_test_true=y_true_test[['ds','y']] | |
fb_final=pd.concat([fb_train_data,fb_test_data]) | |
fb_consumer=fb_final.loc[fb_final[consumer]==1] | |
date_list=[] | |
prediction_list=[] | |
for i in range(24): | |
next_prediction=fb_consumer.tail(1).drop('y',axis=1) # drop target of last 01/01/2015 00:00:00 | |
# print(next_prediction) | |
prediction=model.predict(next_prediction) # pass other feature value to the model | |
# print('*'*20) | |
# print("DateTime :: ",prediction['ds'][0]) | |
# print("Prediction ::",prediction['yhat'][0]) | |
date_list.append(prediction['ds'][0]) ## append the datetime of prediction | |
prediction_list.append(prediction['yhat'][0]) ## append the next timestep prediction | |
last_data = fb_consumer[lambda x: x.ds == x.ds.max()] # last date present in data | |
#--------------------------next timestep data simulate------------------------------------------------------------- | |
decoder_data = pd.concat( | |
[last_data.assign(ds=lambda x: x.ds + pd.offsets.Hour(i)) for i in range(1, 2)], | |
ignore_index=True, | |
) | |
decoder_data['hour'] = decoder_data['ds'].dt.hour | |
decoder_data['day'] = decoder_data['ds'].dt.day | |
decoder_data['day_of_week'] = decoder_data['ds'].dt.dayofweek | |
decoder_data['month'] = decoder_data['ds'].dt.month | |
decoder_data['power_usage']=prediction['yhat'][0] # assume next timestep prediction as actual | |
fb_consumer=pd.concat([fb_consumer,decoder_data]) # append that next timestep data to into main data | |
fb_consumer['lag_1']=fb_consumer['power_usage'].shift(1) # again find shift of power usage and update into the datset | |
fb_consumer['lag_5']=fb_consumer['power_usage'].shift(5) # | |
fb_consumer=fb_consumer.reset_index(drop=True) | |
future_prediction=pd.DataFrame({'ds':date_list,"yhat":prediction_list}) | |
future_prediction['consumer_id']=consumer | |
tab1,tab2=st.tabs(['📈Forecast Plot','🗃Forecast Table']) | |
tab1.markdown(""" | |
<div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'> | |
<h2 style='font-size: 30px; font-family: Palatino, serif; | |
letter-spacing: 2px; text-decoration: none;'> | |
📈 | |
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
text-shadow: none;'> | |
Forecast Plot | |
</span> | |
<span style='font-size: 40%;'> | |
<sup style='position: relative; top: 5px; color: #ed4965;'></sup> | |
</span> | |
</h2> | |
</div> | |
""", unsafe_allow_html=True) | |
y_train_true['y']=y_train_true['y'].astype('float') | |
# y_train_pred['yhat']=y_train_pred['yhat'].astype('float') | |
y_test_true['y']=y_test_true['y'].astype('float') | |
y_test_pred['yhat']=y_test_pred['yhat'].astype('float') | |
fig = go.Figure([ | |
# go.Scatter(x=y_train_true['ds'],y=y_train_true['y'],name='Train Observed',line=dict(color='blue')), | |
#go.Scatter(x=y_train_pred['ds'],y=y_train_pred['yhat'],name='Prophet Pred.(10 Consumer)',line=dict(color='blue', dash='dot')), | |
go.Scatter(x=y_test_true['ds'], y=y_test_true['y'],name='Observed',line=dict(color='purple')), | |
go.Scatter(x=y_test_pred['ds'],y=y_test_pred['yhat'],name='Historical Forecast',line=dict(color='purple', dash='dot')), | |
go.Scatter(x=future_prediction['ds'],y=future_prediction['yhat'],name='Future Forecast',line=dict(color='Dark Orange', dash='dot')) | |
]) | |
fig.update_layout( | |
xaxis_title='Date', | |
yaxis_title='Energy Demand', | |
margin=dict(l=0, r=0, t=50, b=0), | |
xaxis=dict(title_font=dict(size=20)), | |
yaxis=dict(title_font=dict(size=20))) | |
fig.update_layout(width=900,height=400) | |
tab1.plotly_chart(fig) | |
rmse=np.sqrt(mean_squared_error(y_test_true['y'],y_test_pred['yhat'])) | |
mae=mean_absolute_error(y_test_true['y'],y_test_pred['yhat']) | |
with st.sidebar: | |
st.markdown(f""" | |
<style> | |
/* Sidebar header style */ | |
.sidebar-header {{ | |
padding: 1px; | |
background-color: #9966FF; | |
text-align: center; | |
font-size: 13px; | |
font-weight: bold; | |
color: #FFF ; | |
}} | |
</style> | |
<div class="sidebar-header"> | |
Models Evalution | |
</div> | |
""",unsafe_allow_html=True) | |
# st.write("Models Evalution") | |
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[8.67,6.48],"Prophet":[12.82,9.79]}).set_index('KPI'),width=300) | |
st.markdown(f""" | |
<style> | |
/* Sidebar header style */ | |
.sidebar-header {{ | |
padding: 2px; | |
background-color:linear-gradient(45deg, #ed4965, #c05aaf); | |
text-align: center; | |
font-size: 13px; | |
font-weight: bold; | |
color: #FFF ; | |
}} | |
</style> | |
<div class="sidebar-header"> | |
KPI :: {consumer} | |
</div> | |
""",unsafe_allow_html=True) | |
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"Prophet":[rmse,mae]}), width=300) | |
#---------------------------------------- | |
results=y_test_pred.reset_index() | |
# results['y']=y_test_true['y'].reset_index(drop=True) | |
results['consumer_id']=consumer | |
# st.header("Tabular Results") | |
st.divider() | |
tab2.markdown(""" | |
<div style='text-align: left; margin-top:-10px;'> | |
<h2 style='font-size: 30px; font-family: Palatino, serif; | |
letter-spacing: 2px; text-decoration: none;'> | |
📃 | |
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
text-shadow: none;'> | |
Forecast Table | |
</span> | |
<span style='font-size: 40%;'> | |
<sup style='position: relative; top: 5px; color: #ed4965;'></sup> | |
</span> | |
</h2> | |
</div> | |
""", unsafe_allow_html=True) | |
final_results=pd.concat([future_prediction[['ds','consumer_id','yhat']],results[['ds','consumer_id','yhat']]]).sort_values('ds').reset_index(drop=True) | |
csv = convert_df(final_results) | |
tab2.dataframe(final_results,width=500) | |
tab2.download_button("Download", | |
csv, | |
"file.csv", | |
"text/csv", | |
key='download-csv') | |