Sanket45's picture
upload python support file
75ae889
raw
history blame
19 kB
import numpy as np
import pandas as pd
from pytorch_forecasting import TimeSeriesDataSet
from pytorch_forecasting.data import GroupNormalizer
class Energy_DataLoader:
"""
A class for loading and preparing energy consumption data for modeling.
Parameters:
path (str): The path to the data file.
test_dataset_size (int): The size of the test dataset. Defaults to 24.
max_prediction_length (int): The maximum prediction length. Defaults to 24.
max_encoder_length (int): The maximum encoder length. Defaults to 168.
Methods:
load_data(): Loads the energy consumption data from a CSV file.
data_transformation(data): Performs data transformation and preprocessing.
lead(df, lead): Computes the lead of the power usage time series for each consumer.
lag(df, lag): Computes the lag of the power usage time series for each consumer.
select_chunk(data): Selects a subset of the data corresponding to the top 10 consumers.
time_features(df): Extracts time-based features from the data.
data_split(df): Splits the data into training and test datasets.
tft_data(): Prepares the data for training with the Temporal Fusion Transformer (TFT) model.
fb_data(): Prepares the data for training with the Facebook Prophet model.
"""
def __init__(self,path:str,test_dataset_size:int=24,
max_prediction_length:int=24,
max_encoder_length:int=168):
"""
Initialize the Energy_DataLoader class.
Parameters:
path (str): The path to the data file.
test_dataset_size (int): The size of the test dataset. Defaults to 24.
max_prediction_length (int): The maximum prediction length. Defaults to 24.
max_encoder_length (int): The maximum encoder length. Defaults to 168.
"""
self.path=path
self.test_dataset_size=test_dataset_size
self.max_prediction_length=max_prediction_length
self.max_encoder_length=max_encoder_length
def load_data(self):
"""
Load the energy consumption data from a CSV file.
Returns:
data (pandas.DataFrame): The loaded data.
"""
try:
data = pd.read_csv(self.path, index_col=0, sep=';', decimal=',')
print('Load the data sucessfully.')
return data
except:
print("Load the Data Again")
def data_transformation(self,data:pd.DataFrame):
"""
Perform data transformation and preprocessing.
Parameters:
data (pandas.DataFrame): The input data.
Returns:
data (pandas.DataFrame): The transformed data.
"""
data.index = pd.to_datetime(data.index)
data.sort_index(inplace=True)
# resample the data into hr
data = data.resample('1h').mean().replace(0., np.nan)
new_data=data.reset_index()
new_data['year']=new_data['index'].dt.year
data1=new_data.loc[(new_data['year']!=2011)]
data1=data1.set_index('index')
data1=data1.drop(['year'],axis=1)
return data1
def lead(self,df:pd.DataFrame,lead:int=-1):
"""
Compute the lead of the power usage time series for each consumer.
Parameters:
df (pandas.DataFrame): The input dataframe.
lead (int): The lead time period. Defaults to -1.
Returns:
d_lead (pandas.Series): The lead time series.
"""
d_lead=df.groupby('consumer_id')['power_usage'].shift(lead)
return d_lead
def lag(self,df:pd.DataFrame,lag:int=1):
"""
Compute the lag of the power usage time series for each consumer.
Parameters:
df (pandas.DataFrame): The input dataframe.
lag (int): The lag time period. Defaults to 1.
Returns:
d_lag (pandas.Series): The lag time series.
"""
d_lag=df.groupby('consumer_id')['power_usage'].shift(lag)
return d_lag
def select_chunk(self,data:pd.DataFrame):
"""
Select a subset of the data corresponding to the top 10 consumers.
Parameters:
data (pandas.DataFrame): The input data.
Returns:
df (pandas.DataFrame): The selected chunk of data.
"""
top_10_consumer=data.columns[:10]
# select Chuck of data intially
# df=data[['MT_002','MT_004','MT_005','MT_006','MT_008' ]]
df=data[top_10_consumer]
return df
def time_features(self,df:pd.DataFrame):
"""
Extract time-based features from the data.
Parameters:
df (pandas.DataFrame): The input data.
Returns:
time_df (pandas.DataFrame): The dataframe with time-based features.
earliest_time (pandas.Timestamp): The earliest timestamp in the data.
"""
earliest_time = df.index.min()
print(earliest_time)
df_list = []
for label in df:
print()
ts = df[label]
start_date = min(ts.fillna(method='ffill').dropna().index)
end_date = max(ts.fillna(method='bfill').dropna().index)
# print(start_date)
# print(end_date)
active_range = (ts.index >= start_date) & (ts.index <= end_date)
ts = ts[active_range].fillna(0.)
tmp = pd.DataFrame({'power_usage': ts})
date = tmp.index
tmp['hours_from_start'] = (date - earliest_time).seconds / 60 / 60 + (date - earliest_time).days * 24
tmp['hours_from_start'] = tmp['hours_from_start'].astype('int')
tmp['days_from_start'] = (date - earliest_time).days
tmp['date'] = date
tmp['consumer_id'] = label
tmp['hour'] = date.hour
tmp['day'] = date.day
tmp['day_of_week'] = date.dayofweek
tmp['month'] = date.month
#stack all time series vertically
df_list.append(tmp)
time_df = pd.concat(df_list).reset_index(drop=True)
lead_1=self.lead(time_df)
time_df['Lead_1']=lead_1
lag_1=self.lag(time_df,lag=1)
time_df['lag_1']=lag_1
lag_5=self.lag(time_df,lag=5)
time_df['lag_5']=lag_5
time_df=time_df.dropna()
return time_df,earliest_time
def data_split(self,df:pd.DataFrame):
"""
Split the data into training and test datasets.
Parameters:
df (pandas.DataFrame): The input data.
Returns:
train_dataset (pandas.DataFrame): The training dataset.
test_dataset (pandas.DataFrame): The test dataset.
training (TimeSeriesDataSet): The training dataset for modeling.
validation (TimeSeriesDataSet): The validation dataset for modeling.
"""
## Train dataset >> train + validation
train_dataset=df.loc[df['date']<df.date.unique()[-self.test_dataset_size:][0]]
## Test Dataset
test_dataset=df.loc[df['date']>=df.date.unique()[-self.test_dataset_size:][0]]
# training stop cut off
training_cutoff = train_dataset["hours_from_start"].max() - self.max_prediction_length
print('training cutoff ::',training_cutoff)
training = TimeSeriesDataSet(
train_dataset[lambda x: x.hours_from_start <= training_cutoff],
time_idx="hours_from_start",
target="Lead_1",
group_ids=["consumer_id"],
min_encoder_length=self.max_encoder_length // 2,
max_encoder_length=self.max_encoder_length,
min_prediction_length=1,
max_prediction_length=self.max_prediction_length,
static_categoricals=["consumer_id"],
time_varying_known_reals=['power_usage',"hours_from_start","day","day_of_week",
"month", 'hour','lag_1','lag_5'],
time_varying_unknown_reals=['Lead_1'],
target_normalizer=GroupNormalizer(
groups=["consumer_id"], transformation="softplus" # softplus: Apply softplus to output (inverse transformation) and #inverse softplus to input,we normalize by group
),
add_relative_time_idx=True, # if to add a relative time index as feature (i.e. for each sampled sequence, the index will range from -encoder_length to prediction_length)
add_target_scales=True,# if to add scales for target to static real features (i.e. add the center and scale of the unnormalized timeseries as features)
add_encoder_length=True, # if to add decoder length to list of static real variables. True if min_encoder_length != max_encoder_length
# lags={"power_usage":[12,24]}
)
validation = TimeSeriesDataSet.from_dataset(training, train_dataset, predict=True, stop_randomization=True)
# create dataloaders for our model
batch_size = 32
# if you have a strong GPU, feel free to increase the number of workers
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=0)
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size * 10, num_workers=0)
return train_dataset,test_dataset,training,validation
def tft_data(self):
"""
Prepare the data for training with the Temporal Fusion Transformer (TFT) model.
Returns:
train_dataset (pandas.DataFrame): The training dataset.
test_dataset (pandas.DataFrame): The test dataset.
training (TimeSeriesDataSet): The training dataset for modeling.
validation (TimeSeriesDataSet): The validation dataset for modeling.
earliest_time (pandas.Timestamp): The earliest timestamp in the data.
"""
df=self.load_data()
df=self.data_transformation(df)
df=self.select_chunk(df)
df,earliest_time=self.time_features(df)
train_dataset,test_dataset,training,validation =self.data_split(df)
return train_dataset,test_dataset,training,validation,earliest_time
def fb_data(self):
"""
Prepare the data for training with the Facebook Prophet model.
Returns:
train_data (pandas.DataFrame): The training dataset.
test_data (pandas.DataFrame): The test dataset.
consumer_dummay (pandas.Index): The consumer ID columns.
"""
df=self.load_data()
df=self.data_transformation(df)
df=self.select_chunk(df)
df,earliest_time=self.time_features(df)
consumer_dummay=pd.get_dummies(df['consumer_id'])
## add encoded column into main
df[consumer_dummay.columns]=consumer_dummay
updated_df=df.drop(['consumer_id','hours_from_start','days_from_start'],axis=1)
updated_df=updated_df.rename({'date':'ds',"Lead_1":'y'},axis=1)
## Train dataset >> train + validation
train_data=updated_df.loc[updated_df['ds']<updated_df.ds.unique()[-self.test_dataset_size:][0]]
## Test Dataset
test_data=updated_df.loc[updated_df['ds']>=updated_df.ds.unique()[-self.test_dataset_size:][0]]
return train_data,test_data,consumer_dummay.columns
#-------------------------------------------------------------------------------------
class StoreDataLoader:
def __init__(self,path):
self.path=path
def load_data(self):
try:
data = pd.read_csv(self.path)
data['date']= pd.to_datetime(data['date'])
items=[i for i in range(1,11)]
data=data.loc[(data['store']==1) & (data['item'].isin(items))]
# data['date']=data['date'].dt.date
print('Load the data sucessfully.')
return data
except:
print("Load the Data Again")
def create_week_date_featues(self,df,date_column):
df['Month'] = pd.to_datetime(df[date_column]).dt.month
df['Day'] = pd.to_datetime(df[date_column]).dt.day
df['Dayofweek'] = pd.to_datetime(df[date_column]).dt.dayofweek
df['DayOfyear'] = pd.to_datetime(df[date_column]).dt.dayofyear
df['Week'] = pd.to_datetime(df[date_column]).dt.week
df['Quarter'] = pd.to_datetime(df[date_column]).dt.quarter
df['Is_month_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_month_start,0,1)
df['Is_month_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_month_end,0,1)
df['Is_quarter_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_quarter_start,0,1)
df['Is_quarter_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_quarter_end,0,1)
df['Is_year_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_year_start,0,1)
df['Is_year_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_year_end,0,1)
df['Semester'] = np.where(df[date_column].isin([1,2]),1,2)
df['Is_weekend'] = np.where(df[date_column].isin([5,6]),1,0)
df['Is_weekday'] = np.where(df[date_column].isin([0,1,2,3,4]),1,0)
df['Days_in_month'] = pd.to_datetime(df[date_column]).dt.days_in_month
return df
def lead(self,df,lead=-1):
d_lead=df.groupby(['store','item'])['sales'].shift(lead)
return d_lead
def lag(self,df,lag=1):
d_lag=df.groupby(['store','item'])['sales'].shift(lag)
return d_lag
def time_features(self,df):
earliest_time = df['date'].min()
print(earliest_time)
df['hours_from_start'] = (df['date'] - earliest_time).dt.seconds / 60 / 60 + (df['date'] - earliest_time).dt.days * 24
df['hours_from_start'] = df['hours_from_start'].astype('int')
df['days_from_start'] = (df['date'] - earliest_time).dt.days
# new_weather_data['date'] = date
# new_weather_data['consumer_id'] = label
df=self.create_week_date_featues(df,'date')
# change dtypes of store
df['store']=df['store'].astype('str')
df['item']=df['item'].astype('str')
df['sales']=df['sales'].astype('float')
df["log_sales"] = np.log(df.sales + 1e-8)
df["avg_demand_by_store"] = df.groupby(["days_from_start", "store"], observed=True).sales.transform("mean")
df["avg_demand_by_item"] = df.groupby(["days_from_start", "item"], observed=True).sales.transform("mean")
# items=[str(i) for i in range(1,11)]
# df=df.loc[(df['store']=='1') & (df['item'].isin(items))]
# df=df.reset_index(drop=True)
d_1=self.lead(df)
df['Lead_1']=d_1
d_lag1=self.lag(df,lag=1)
df['lag_1']=d_lag1
d_lag5=self.lag(df,lag=5)
df['lag_5']=d_lag5
df=df.dropna()
return df,earliest_time
def split_data(self,df,test_dataset_size=30,max_prediction_length=30,max_encoder_length=120):
# df=self.load_data()
# df,earliest_time=self.time_features(df)
## Train dataset >> train + validation
train_dataset=df.loc[df['date']<df.date.unique()[-test_dataset_size:][0]]
## Test Dataset
test_dataset=df.loc[df['date']>=df.date.unique()[-test_dataset_size:][0]]
training_cutoff = train_dataset["days_from_start"].max() - max_prediction_length
print("Training cutoff point ::",training_cutoff)
training = TimeSeriesDataSet(
train_dataset[lambda x: x.days_from_start <= training_cutoff],
time_idx="days_from_start",
target="Lead_1", ## target use as lead
group_ids=['store','item'],
min_encoder_length=max_encoder_length // 2,
max_encoder_length=max_encoder_length,
min_prediction_length=1,
max_prediction_length=max_prediction_length,
static_categoricals=["store",'item'],
static_reals=[],
time_varying_known_categoricals=[],
time_varying_known_reals=["days_from_start","Day", "Month","Dayofweek","DayOfyear","Days_in_month",'Week', 'Quarter',
'Is_month_start', 'Is_month_end', 'Is_quarter_start', 'Is_quarter_end',
'Is_year_start', 'Is_year_end', 'Semester', 'Is_weekend', 'Is_weekday','Dayofweek', 'DayOfyear','lag_1','lag_5','sales'],
time_varying_unknown_reals=['Lead_1','log_sales','avg_demand_by_store','avg_demand_by_item'],
target_normalizer=GroupNormalizer(
groups=["store","item"], transformation="softplus"
), # we normalize by group
add_relative_time_idx=True,
add_target_scales=True,
add_encoder_length=True, #
allow_missing_timesteps=True,
)
validation = TimeSeriesDataSet.from_dataset(training, train_dataset, predict=True, stop_randomization=True)
# create dataloaders for our model
batch_size = 32
# if you have a strong GPU, feel free to increase the number of workers
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=0)
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size * 10, num_workers=0)
return train_dataset,test_dataset,training,validation
def tft_data(self):
df=self.load_data()
df,earliest_time=self.time_features(df)
train_dataset,test_dataset,training,validation=self.split_data(df)
return train_dataset,test_dataset,training,validation,earliest_time
def fb_data(self,test_dataset_size=30):
df=self.load_data()
df,earliest_time=self.time_features(df)
store_dummay=pd.get_dummies(df['store'],prefix='store')
# store_dummay.head()
item_dummay=pd.get_dummies(df['item'],prefix='item')
# item_dummay.head()
df_encode=pd.concat([store_dummay,item_dummay],axis=1)
# df_encode.head()
## add encoded column into main
df[df_encode.columns]=df_encode
df=df.drop(['store','item','log_sales','avg_demand_by_store','avg_demand_by_item'],axis=1)
df=df.rename({'date':'ds',"Lead_1":'y'},axis=1)
fb_train_data = df.loc[df['ds'] <= '2017-11-30']
fb_test_data = df.loc[df['ds'] > '2017-11-30']
# fb_train_data=df.loc[df['ds']<df.ds.unique()[-test_dataset_size:][0]]
# fb_test_data=df.loc[df['ds']>=df.ds.unique()[-test_dataset_size:][0]]
return fb_train_data,fb_test_data,item_dummay,store_dummay
if __name__=='__main__':
obj=Energy_DataLoader(r'D:\Ai Practices\Transformer Based Forecasting\stremlit app\LD2011_2014.txt')
obj.load()