Spaces:
Runtime error
Runtime error
import numpy as np | |
import pandas as pd | |
from pytorch_forecasting import TimeSeriesDataSet | |
from pytorch_forecasting.data import GroupNormalizer | |
class Energy_DataLoader: | |
""" | |
A class for loading and preparing energy consumption data for modeling. | |
Parameters: | |
path (str): The path to the data file. | |
test_dataset_size (int): The size of the test dataset. Defaults to 24. | |
max_prediction_length (int): The maximum prediction length. Defaults to 24. | |
max_encoder_length (int): The maximum encoder length. Defaults to 168. | |
Methods: | |
load_data(): Loads the energy consumption data from a CSV file. | |
data_transformation(data): Performs data transformation and preprocessing. | |
lead(df, lead): Computes the lead of the power usage time series for each consumer. | |
lag(df, lag): Computes the lag of the power usage time series for each consumer. | |
select_chunk(data): Selects a subset of the data corresponding to the top 10 consumers. | |
time_features(df): Extracts time-based features from the data. | |
data_split(df): Splits the data into training and test datasets. | |
tft_data(): Prepares the data for training with the Temporal Fusion Transformer (TFT) model. | |
fb_data(): Prepares the data for training with the Facebook Prophet model. | |
""" | |
def __init__(self,path:str,test_dataset_size:int=24, | |
max_prediction_length:int=24, | |
max_encoder_length:int=168): | |
""" | |
Initialize the Energy_DataLoader class. | |
Parameters: | |
path (str): The path to the data file. | |
test_dataset_size (int): The size of the test dataset. Defaults to 24. | |
max_prediction_length (int): The maximum prediction length. Defaults to 24. | |
max_encoder_length (int): The maximum encoder length. Defaults to 168. | |
""" | |
self.path=path | |
self.test_dataset_size=test_dataset_size | |
self.max_prediction_length=max_prediction_length | |
self.max_encoder_length=max_encoder_length | |
def load_data(self): | |
""" | |
Load the energy consumption data from a CSV file. | |
Returns: | |
data (pandas.DataFrame): The loaded data. | |
""" | |
try: | |
data = pd.read_csv(self.path, index_col=0, sep=';', decimal=',') | |
print('Load the data sucessfully.') | |
return data | |
except: | |
print("Load the Data Again") | |
def data_transformation(self,data:pd.DataFrame): | |
""" | |
Perform data transformation and preprocessing. | |
Parameters: | |
data (pandas.DataFrame): The input data. | |
Returns: | |
data (pandas.DataFrame): The transformed data. | |
""" | |
data.index = pd.to_datetime(data.index) | |
data.sort_index(inplace=True) | |
# resample the data into hr | |
data = data.resample('1h').mean().replace(0., np.nan) | |
new_data=data.reset_index() | |
new_data['year']=new_data['index'].dt.year | |
data1=new_data.loc[(new_data['year']!=2011)] | |
data1=data1.set_index('index') | |
data1=data1.drop(['year'],axis=1) | |
return data1 | |
def lead(self,df:pd.DataFrame,lead:int=-1): | |
""" | |
Compute the lead of the power usage time series for each consumer. | |
Parameters: | |
df (pandas.DataFrame): The input dataframe. | |
lead (int): The lead time period. Defaults to -1. | |
Returns: | |
d_lead (pandas.Series): The lead time series. | |
""" | |
d_lead=df.groupby('consumer_id')['power_usage'].shift(lead) | |
return d_lead | |
def lag(self,df:pd.DataFrame,lag:int=1): | |
""" | |
Compute the lag of the power usage time series for each consumer. | |
Parameters: | |
df (pandas.DataFrame): The input dataframe. | |
lag (int): The lag time period. Defaults to 1. | |
Returns: | |
d_lag (pandas.Series): The lag time series. | |
""" | |
d_lag=df.groupby('consumer_id')['power_usage'].shift(lag) | |
return d_lag | |
def select_chunk(self,data:pd.DataFrame): | |
""" | |
Select a subset of the data corresponding to the top 10 consumers. | |
Parameters: | |
data (pandas.DataFrame): The input data. | |
Returns: | |
df (pandas.DataFrame): The selected chunk of data. | |
""" | |
top_10_consumer=data.columns[:10] | |
# select Chuck of data intially | |
# df=data[['MT_002','MT_004','MT_005','MT_006','MT_008' ]] | |
df=data[top_10_consumer] | |
return df | |
def time_features(self,df:pd.DataFrame): | |
""" | |
Extract time-based features from the data. | |
Parameters: | |
df (pandas.DataFrame): The input data. | |
Returns: | |
time_df (pandas.DataFrame): The dataframe with time-based features. | |
earliest_time (pandas.Timestamp): The earliest timestamp in the data. | |
""" | |
earliest_time = df.index.min() | |
print(earliest_time) | |
df_list = [] | |
for label in df: | |
print() | |
ts = df[label] | |
start_date = min(ts.fillna(method='ffill').dropna().index) | |
end_date = max(ts.fillna(method='bfill').dropna().index) | |
# print(start_date) | |
# print(end_date) | |
active_range = (ts.index >= start_date) & (ts.index <= end_date) | |
ts = ts[active_range].fillna(0.) | |
tmp = pd.DataFrame({'power_usage': ts}) | |
date = tmp.index | |
tmp['hours_from_start'] = (date - earliest_time).seconds / 60 / 60 + (date - earliest_time).days * 24 | |
tmp['hours_from_start'] = tmp['hours_from_start'].astype('int') | |
tmp['days_from_start'] = (date - earliest_time).days | |
tmp['date'] = date | |
tmp['consumer_id'] = label | |
tmp['hour'] = date.hour | |
tmp['day'] = date.day | |
tmp['day_of_week'] = date.dayofweek | |
tmp['month'] = date.month | |
#stack all time series vertically | |
df_list.append(tmp) | |
time_df = pd.concat(df_list).reset_index(drop=True) | |
lead_1=self.lead(time_df) | |
time_df['Lead_1']=lead_1 | |
lag_1=self.lag(time_df,lag=1) | |
time_df['lag_1']=lag_1 | |
lag_5=self.lag(time_df,lag=5) | |
time_df['lag_5']=lag_5 | |
time_df=time_df.dropna() | |
return time_df,earliest_time | |
def data_split(self,df:pd.DataFrame): | |
""" | |
Split the data into training and test datasets. | |
Parameters: | |
df (pandas.DataFrame): The input data. | |
Returns: | |
train_dataset (pandas.DataFrame): The training dataset. | |
test_dataset (pandas.DataFrame): The test dataset. | |
training (TimeSeriesDataSet): The training dataset for modeling. | |
validation (TimeSeriesDataSet): The validation dataset for modeling. | |
""" | |
## Train dataset >> train + validation | |
train_dataset=df.loc[df['date']<df.date.unique()[-self.test_dataset_size:][0]] | |
## Test Dataset | |
test_dataset=df.loc[df['date']>=df.date.unique()[-self.test_dataset_size:][0]] | |
# training stop cut off | |
training_cutoff = train_dataset["hours_from_start"].max() - self.max_prediction_length | |
print('training cutoff ::',training_cutoff) | |
training = TimeSeriesDataSet( | |
train_dataset[lambda x: x.hours_from_start <= training_cutoff], | |
time_idx="hours_from_start", | |
target="Lead_1", | |
group_ids=["consumer_id"], | |
min_encoder_length=self.max_encoder_length // 2, | |
max_encoder_length=self.max_encoder_length, | |
min_prediction_length=1, | |
max_prediction_length=self.max_prediction_length, | |
static_categoricals=["consumer_id"], | |
time_varying_known_reals=['power_usage',"hours_from_start","day","day_of_week", | |
"month", 'hour','lag_1','lag_5'], | |
time_varying_unknown_reals=['Lead_1'], | |
target_normalizer=GroupNormalizer( | |
groups=["consumer_id"], transformation="softplus" # softplus: Apply softplus to output (inverse transformation) and #inverse softplus to input,we normalize by group | |
), | |
add_relative_time_idx=True, # if to add a relative time index as feature (i.e. for each sampled sequence, the index will range from -encoder_length to prediction_length) | |
add_target_scales=True,# if to add scales for target to static real features (i.e. add the center and scale of the unnormalized timeseries as features) | |
add_encoder_length=True, # if to add decoder length to list of static real variables. True if min_encoder_length != max_encoder_length | |
# lags={"power_usage":[12,24]} | |
) | |
validation = TimeSeriesDataSet.from_dataset(training, train_dataset, predict=True, stop_randomization=True) | |
# create dataloaders for our model | |
batch_size = 32 | |
# if you have a strong GPU, feel free to increase the number of workers | |
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=0) | |
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size * 10, num_workers=0) | |
return train_dataset,test_dataset,training,validation | |
def tft_data(self): | |
""" | |
Prepare the data for training with the Temporal Fusion Transformer (TFT) model. | |
Returns: | |
train_dataset (pandas.DataFrame): The training dataset. | |
test_dataset (pandas.DataFrame): The test dataset. | |
training (TimeSeriesDataSet): The training dataset for modeling. | |
validation (TimeSeriesDataSet): The validation dataset for modeling. | |
earliest_time (pandas.Timestamp): The earliest timestamp in the data. | |
""" | |
df=self.load_data() | |
df=self.data_transformation(df) | |
df=self.select_chunk(df) | |
df,earliest_time=self.time_features(df) | |
train_dataset,test_dataset,training,validation =self.data_split(df) | |
return train_dataset,test_dataset,training,validation,earliest_time | |
def fb_data(self): | |
""" | |
Prepare the data for training with the Facebook Prophet model. | |
Returns: | |
train_data (pandas.DataFrame): The training dataset. | |
test_data (pandas.DataFrame): The test dataset. | |
consumer_dummay (pandas.Index): The consumer ID columns. | |
""" | |
df=self.load_data() | |
df=self.data_transformation(df) | |
df=self.select_chunk(df) | |
df,earliest_time=self.time_features(df) | |
consumer_dummay=pd.get_dummies(df['consumer_id']) | |
## add encoded column into main | |
df[consumer_dummay.columns]=consumer_dummay | |
updated_df=df.drop(['consumer_id','hours_from_start','days_from_start'],axis=1) | |
updated_df=updated_df.rename({'date':'ds',"Lead_1":'y'},axis=1) | |
## Train dataset >> train + validation | |
train_data=updated_df.loc[updated_df['ds']<updated_df.ds.unique()[-self.test_dataset_size:][0]] | |
## Test Dataset | |
test_data=updated_df.loc[updated_df['ds']>=updated_df.ds.unique()[-self.test_dataset_size:][0]] | |
return train_data,test_data,consumer_dummay.columns | |
#------------------------------------------------------------------------------------- | |
class StoreDataLoader: | |
def __init__(self,path): | |
self.path=path | |
def load_data(self): | |
try: | |
data = pd.read_csv(self.path) | |
data['date']= pd.to_datetime(data['date']) | |
items=[i for i in range(1,11)] | |
data=data.loc[(data['store']==1) & (data['item'].isin(items))] | |
# data['date']=data['date'].dt.date | |
print('Load the data sucessfully.') | |
return data | |
except: | |
print("Load the Data Again") | |
def create_week_date_featues(self,df,date_column): | |
df['Month'] = pd.to_datetime(df[date_column]).dt.month | |
df['Day'] = pd.to_datetime(df[date_column]).dt.day | |
df['Dayofweek'] = pd.to_datetime(df[date_column]).dt.dayofweek | |
df['DayOfyear'] = pd.to_datetime(df[date_column]).dt.dayofyear | |
df['Week'] = pd.to_datetime(df[date_column]).dt.week | |
df['Quarter'] = pd.to_datetime(df[date_column]).dt.quarter | |
df['Is_month_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_month_start,0,1) | |
df['Is_month_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_month_end,0,1) | |
df['Is_quarter_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_quarter_start,0,1) | |
df['Is_quarter_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_quarter_end,0,1) | |
df['Is_year_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_year_start,0,1) | |
df['Is_year_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_year_end,0,1) | |
df['Semester'] = np.where(df[date_column].isin([1,2]),1,2) | |
df['Is_weekend'] = np.where(df[date_column].isin([5,6]),1,0) | |
df['Is_weekday'] = np.where(df[date_column].isin([0,1,2,3,4]),1,0) | |
df['Days_in_month'] = pd.to_datetime(df[date_column]).dt.days_in_month | |
return df | |
def lead(self,df,lead=-1): | |
d_lead=df.groupby(['store','item'])['sales'].shift(lead) | |
return d_lead | |
def lag(self,df,lag=1): | |
d_lag=df.groupby(['store','item'])['sales'].shift(lag) | |
return d_lag | |
def time_features(self,df): | |
earliest_time = df['date'].min() | |
print(earliest_time) | |
df['hours_from_start'] = (df['date'] - earliest_time).dt.seconds / 60 / 60 + (df['date'] - earliest_time).dt.days * 24 | |
df['hours_from_start'] = df['hours_from_start'].astype('int') | |
df['days_from_start'] = (df['date'] - earliest_time).dt.days | |
# new_weather_data['date'] = date | |
# new_weather_data['consumer_id'] = label | |
df=self.create_week_date_featues(df,'date') | |
# change dtypes of store | |
df['store']=df['store'].astype('str') | |
df['item']=df['item'].astype('str') | |
df['sales']=df['sales'].astype('float') | |
df["log_sales"] = np.log(df.sales + 1e-8) | |
df["avg_demand_by_store"] = df.groupby(["days_from_start", "store"], observed=True).sales.transform("mean") | |
df["avg_demand_by_item"] = df.groupby(["days_from_start", "item"], observed=True).sales.transform("mean") | |
# items=[str(i) for i in range(1,11)] | |
# df=df.loc[(df['store']=='1') & (df['item'].isin(items))] | |
# df=df.reset_index(drop=True) | |
d_1=self.lead(df) | |
df['Lead_1']=d_1 | |
d_lag1=self.lag(df,lag=1) | |
df['lag_1']=d_lag1 | |
d_lag5=self.lag(df,lag=5) | |
df['lag_5']=d_lag5 | |
df=df.dropna() | |
return df,earliest_time | |
def split_data(self,df,test_dataset_size=30,max_prediction_length=30,max_encoder_length=120): | |
# df=self.load_data() | |
# df,earliest_time=self.time_features(df) | |
## Train dataset >> train + validation | |
train_dataset=df.loc[df['date']<df.date.unique()[-test_dataset_size:][0]] | |
## Test Dataset | |
test_dataset=df.loc[df['date']>=df.date.unique()[-test_dataset_size:][0]] | |
training_cutoff = train_dataset["days_from_start"].max() - max_prediction_length | |
print("Training cutoff point ::",training_cutoff) | |
training = TimeSeriesDataSet( | |
train_dataset[lambda x: x.days_from_start <= training_cutoff], | |
time_idx="days_from_start", | |
target="Lead_1", ## target use as lead | |
group_ids=['store','item'], | |
min_encoder_length=max_encoder_length // 2, | |
max_encoder_length=max_encoder_length, | |
min_prediction_length=1, | |
max_prediction_length=max_prediction_length, | |
static_categoricals=["store",'item'], | |
static_reals=[], | |
time_varying_known_categoricals=[], | |
time_varying_known_reals=["days_from_start","Day", "Month","Dayofweek","DayOfyear","Days_in_month",'Week', 'Quarter', | |
'Is_month_start', 'Is_month_end', 'Is_quarter_start', 'Is_quarter_end', | |
'Is_year_start', 'Is_year_end', 'Semester', 'Is_weekend', 'Is_weekday','Dayofweek', 'DayOfyear','lag_1','lag_5','sales'], | |
time_varying_unknown_reals=['Lead_1','log_sales','avg_demand_by_store','avg_demand_by_item'], | |
target_normalizer=GroupNormalizer( | |
groups=["store","item"], transformation="softplus" | |
), # we normalize by group | |
add_relative_time_idx=True, | |
add_target_scales=True, | |
add_encoder_length=True, # | |
allow_missing_timesteps=True, | |
) | |
validation = TimeSeriesDataSet.from_dataset(training, train_dataset, predict=True, stop_randomization=True) | |
# create dataloaders for our model | |
batch_size = 32 | |
# if you have a strong GPU, feel free to increase the number of workers | |
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=0) | |
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size * 10, num_workers=0) | |
return train_dataset,test_dataset,training,validation | |
def tft_data(self): | |
df=self.load_data() | |
df,earliest_time=self.time_features(df) | |
train_dataset,test_dataset,training,validation=self.split_data(df) | |
return train_dataset,test_dataset,training,validation,earliest_time | |
def fb_data(self,test_dataset_size=30): | |
df=self.load_data() | |
df,earliest_time=self.time_features(df) | |
store_dummay=pd.get_dummies(df['store'],prefix='store') | |
# store_dummay.head() | |
item_dummay=pd.get_dummies(df['item'],prefix='item') | |
# item_dummay.head() | |
df_encode=pd.concat([store_dummay,item_dummay],axis=1) | |
# df_encode.head() | |
## add encoded column into main | |
df[df_encode.columns]=df_encode | |
df=df.drop(['store','item','log_sales','avg_demand_by_store','avg_demand_by_item'],axis=1) | |
df=df.rename({'date':'ds',"Lead_1":'y'},axis=1) | |
fb_train_data = df.loc[df['ds'] <= '2017-11-30'] | |
fb_test_data = df.loc[df['ds'] > '2017-11-30'] | |
# fb_train_data=df.loc[df['ds']<df.ds.unique()[-test_dataset_size:][0]] | |
# fb_test_data=df.loc[df['ds']>=df.ds.unique()[-test_dataset_size:][0]] | |
return fb_train_data,fb_test_data,item_dummay,store_dummay | |
if __name__=='__main__': | |
obj=Energy_DataLoader(r'D:\Ai Practices\Transformer Based Forecasting\stremlit app\LD2011_2014.txt') | |
obj.load() | |