affine commited on
Commit
a16ce34
·
1 Parent(s): 6e7f6b0

Update pages/1_Store Demand Forecasting.py

Browse files
Files changed (1) hide show
  1. pages/1_Store Demand Forecasting.py +36 -36
pages/1_Store Demand Forecasting.py CHANGED
@@ -177,7 +177,7 @@ if option=='TFT':
177
 
178
  #--------------------------------------------------------------------------------------------------------------
179
  # tabs
180
- tab1,tab2,tab3=st.tabs(['📈Forecast Plot','🗃Forecast Table','🗃Actual Table']) #
181
  #------------------------------------------------Tab-1-----------------------------------------------------------
182
  tab1.markdown("""
183
  <div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
@@ -246,28 +246,28 @@ if option=='TFT':
246
  key='download-csv'
247
  )
248
  #--------------------------------Tab-3----------------------------------------------
249
- tab3.markdown("""
250
- <div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
251
- <h2 style='font-size: 30px; font-family: Palatino, serif;
252
- letter-spacing: 2px; text-decoration: none;'>
253
- &#x1F4C8;
254
- <span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
255
- -webkit-background-clip: text;
256
- -webkit-text-fill-color: transparent;
257
- text-shadow: none;'>
258
- Actual Dataset
259
- </span>
260
- <span style='font-size: 40%;'>
261
- <sup style='position: relative; top: 5px; color: #ed4965;'></sup>
262
- </span>
263
- </h2>
264
- </div>
265
- """, unsafe_allow_html=True)
266
- train_a=train_dataset.loc[(train_dataset['store']==store) & (train_dataset['item']==item)][['date','store','item','sales']]
267
- test_a=test_dataset.loc[(test_dataset['store']==store) & (test_dataset['item']==item)][['date','store','item','sales']]
268
- actual_final_data=pd.concat([train_a,test_a])
269
- actual_final_data['date']=actual_final_data['date'].dt.date
270
- tab3.dataframe(actual_final_data,width=500)
271
 
272
  except:
273
  st.sidebar.error('Model Not Loaded successfully!',icon="🚨")
@@ -397,7 +397,7 @@ elif option=='Prophet':
397
  st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"Prophet":[rmse,mae]}).set_index('KPI'),width=300)
398
 
399
  #---------------------------------------Tabs-----------------------------------------------------------------------
400
- tab1,tab2,tab3=st.tabs(['📈Forecast Plot','🗃Forecast Table','🗃Actual Table']) # '🗃Actual Table'
401
  #-------------------------------------------Tab-1=Forecast plot---------------------------------------------------
402
  tab1.markdown("""
403
  <div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
@@ -477,18 +477,18 @@ elif option=='Prophet':
477
  )
478
 
479
  #------------------------------------------Tab-3--------------------------------------------------
480
- train_a=fb_train_data.loc[fb_train_data[item]==1][['ds','sales']]
481
- # train_a['store']=1
482
- # train_a['item']=item
483
- test_a=fb_test_data.loc[fb_test_data[item]==1][['ds','sales']]
484
- # test_a['store']=1
485
- # test_a['item']=item.split('_')[-1]
486
- actual_final_data=pd.concat([train_a,test_a])
487
- actual_final_data['store']=1
488
- actual_final_data['item']=item.split('_')[-1]
489
- actual_final_data['ds']=actual_final_data['ds'].dt.date
490
- actual_final_data.rename({"ds":'date'},inplace=True)
491
- tab3.dataframe(actual_final_data[['date','store','item','sales']],width=500)
492
 
493
 
494
 
 
177
 
178
  #--------------------------------------------------------------------------------------------------------------
179
  # tabs
180
+ tab1,tab2=st.tabs(['📈Forecast Plot','🗃Forecast Table']) #tab3-'🗃Actual Table'
181
  #------------------------------------------------Tab-1-----------------------------------------------------------
182
  tab1.markdown("""
183
  <div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
 
246
  key='download-csv'
247
  )
248
  #--------------------------------Tab-3----------------------------------------------
249
+ # tab3.markdown("""
250
+ # <div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
251
+ # <h2 style='font-size: 30px; font-family: Palatino, serif;
252
+ # letter-spacing: 2px; text-decoration: none;'>
253
+ # &#x1F4C8;
254
+ # <span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
255
+ # -webkit-background-clip: text;
256
+ # -webkit-text-fill-color: transparent;
257
+ # text-shadow: none;'>
258
+ # Actual Dataset
259
+ # </span>
260
+ # <span style='font-size: 40%;'>
261
+ # <sup style='position: relative; top: 5px; color: #ed4965;'></sup>
262
+ # </span>
263
+ # </h2>
264
+ # </div>
265
+ # """, unsafe_allow_html=True)
266
+ # train_a=train_dataset.loc[(train_dataset['store']==store) & (train_dataset['item']==item)][['date','store','item','sales']]
267
+ # test_a=test_dataset.loc[(test_dataset['store']==store) & (test_dataset['item']==item)][['date','store','item','sales']]
268
+ # actual_final_data=pd.concat([train_a,test_a])
269
+ # actual_final_data['date']=actual_final_data['date'].dt.date
270
+ # tab3.dataframe(actual_final_data,width=500)
271
 
272
  except:
273
  st.sidebar.error('Model Not Loaded successfully!',icon="🚨")
 
397
  st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"Prophet":[rmse,mae]}).set_index('KPI'),width=300)
398
 
399
  #---------------------------------------Tabs-----------------------------------------------------------------------
400
+ tab1,tab2=st.tabs(['📈Forecast Plot','🗃Forecast Table']) #tab3- '🗃Actual Table'
401
  #-------------------------------------------Tab-1=Forecast plot---------------------------------------------------
402
  tab1.markdown("""
403
  <div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
 
477
  )
478
 
479
  #------------------------------------------Tab-3--------------------------------------------------
480
+ # train_a=fb_train_data.loc[fb_train_data[item]==1][['ds','sales']]
481
+ # # train_a['store']=1
482
+ # # train_a['item']=item
483
+ # test_a=fb_test_data.loc[fb_test_data[item]==1][['ds','sales']]
484
+ # # test_a['store']=1
485
+ # # test_a['item']=item.split('_')[-1]
486
+ # actual_final_data=pd.concat([train_a,test_a])
487
+ # actual_final_data['store']=1
488
+ # actual_final_data['item']=item.split('_')[-1]
489
+ # actual_final_data['ds']=actual_final_data['ds'].dt.date
490
+ # actual_final_data.rename({"ds":'date'},inplace=True)
491
+ # tab3.dataframe(actual_final_data[['date','store','item','sales']],width=500)
492
 
493
 
494