Spaces:
Runtime error
Runtime error
harpreetsahota
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,77 @@
|
|
1 |
-
# Fork of the SantaCoder demo (https://huggingface.co/spaces/bigcode/santacoder-demo)
|
2 |
-
|
3 |
import gradio as gr
|
4 |
-
from transformers import AutoTokenizer,
|
5 |
-
from transformers import pipeline
|
6 |
-
import os
|
7 |
-
import torch
|
8 |
-
from typing import Union, Tuple, List
|
9 |
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
<span style='color: #292b47;'>Welcome to <a href="https://huggingface.co/Deci/DeciCoder-1b" style="color: #3264ff;">DeciCoder</a>!
|
13 |
-
DeciCoder is a 1B parameter code generation model trained on The Stack dataset and released under an Apache 2.0 license. It's capable of writing code in Python,
|
14 |
-
JavaScript, and Java. It's a code-completion model, not an instruction-tuned model; you should prompt the model with a function signature and docstring
|
15 |
-
and let it complete the rest. The model can also do infilling, specify where you would like the model to complete code with the <span style='color: #3264ff;'><FILL_HERE></span>
|
16 |
-
token.</span>"""
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
FIM_SUFFIX = "<fim_suffix>"
|
25 |
-
FIM_PAD = "<fim_pad>"
|
26 |
-
EOD = "<|endoftext|>"
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
"pad_token": EOD,
|
35 |
-
})
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
model
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def post_processing(prompt: str, completion: str) -> str:
|
44 |
"""
|
@@ -55,108 +88,20 @@ def post_processing(prompt: str, completion: str) -> str:
|
|
55 |
prompt = "<span style='color: #7484b7;'>" + prompt + "</span>"
|
56 |
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prompt}{completion}</code></pre><br><hr>"
|
57 |
return GENERATION_TITLE + code_html
|
58 |
-
|
59 |
-
|
60 |
-
def post_processing_fim(prefix: str, middle: str, suffix: str) -> str:
|
61 |
-
"""
|
62 |
-
Post-processes the FIM (fill in the middle) generated code with HTML styling.
|
63 |
-
|
64 |
-
Args:
|
65 |
-
prefix (str): The prefix part of the code.
|
66 |
-
middle (str): The generated middle part of the code.
|
67 |
-
suffix (str): The suffix part of the code.
|
68 |
-
|
69 |
-
Returns:
|
70 |
-
str: The HTML-styled code with prefix, middle, and suffix.
|
71 |
-
"""
|
72 |
-
prefix = "<span style='color: #7484b7;'>" + prefix + "</span>"
|
73 |
-
middle = "<span style='color: #ff5b86;'>" + middle + "</span>"
|
74 |
-
suffix = "<span style='color: #7484b7;'>" + suffix + "</span>"
|
75 |
-
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prefix}{middle}{suffix}</code></pre><br><hr>"
|
76 |
-
return GENERATION_TITLE + code_html
|
77 |
-
|
78 |
-
def fim_generation(prompt: str, max_new_tokens: int, temperature: float) -> str:
|
79 |
-
"""
|
80 |
-
Generates code for FIM (fill in the middle) task.
|
81 |
|
82 |
-
|
83 |
-
prompt (str): The input code prompt with <FILL_HERE> token.
|
84 |
-
max_new_tokens (int): Maximum number of tokens to generate.
|
85 |
-
temperature (float): Sampling temperature for generation.
|
86 |
-
|
87 |
-
Returns:
|
88 |
-
str: The HTML-styled code with filled missing part.
|
89 |
-
"""
|
90 |
-
prefix = prompt.split("<FILL_HERE>")[0]
|
91 |
-
suffix = prompt.split("<FILL_HERE>")[1]
|
92 |
-
[middle] = infill((prefix, suffix), max_new_tokens, temperature)
|
93 |
-
return post_processing_fim(prefix, middle, suffix)
|
94 |
-
|
95 |
-
def extract_fim_part(s: str) -> str:
|
96 |
-
"""
|
97 |
-
Extracts the FIM (fill in the middle) part from the generated string.
|
98 |
-
|
99 |
-
Args:
|
100 |
-
s (str): The generated string with FIM tokens.
|
101 |
-
|
102 |
-
Returns:
|
103 |
-
str: The extracted FIM part.
|
104 |
-
"""
|
105 |
-
# Find the index of
|
106 |
-
start = s.find(FIM_MIDDLE) + len(FIM_MIDDLE)
|
107 |
-
stop = s.find(EOD, start) or len(s)
|
108 |
-
return s[start:stop]
|
109 |
-
|
110 |
-
def infill(prefix_suffix_tuples: Union[Tuple[str, str], List[Tuple[str, str]]], max_new_tokens: int, temperature: float) -> List[str]:
|
111 |
-
"""
|
112 |
-
Generates the infill for the given prefix and suffix tuples.
|
113 |
-
|
114 |
-
Args:
|
115 |
-
prefix_suffix_tuples (Union[Tuple[str, str], List[Tuple[str, str]]]): Prefix and suffix tuples.
|
116 |
-
max_new_tokens (int): Maximum number of tokens to generate.
|
117 |
-
temperature (float): Sampling temperature for generation.
|
118 |
-
|
119 |
-
Returns:
|
120 |
-
List[str]: The list of generated infill strings.
|
121 |
-
"""
|
122 |
-
if type(prefix_suffix_tuples) == tuple:
|
123 |
-
prefix_suffix_tuples = [prefix_suffix_tuples]
|
124 |
-
|
125 |
-
prompts = [f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" for prefix, suffix in prefix_suffix_tuples]
|
126 |
-
# `return_token_type_ids=False` is essential, or we get nonsense output.
|
127 |
-
inputs = tokenizer_fim(prompts, return_tensors="pt", padding=True, return_token_type_ids=False).to(device)
|
128 |
-
with torch.no_grad():
|
129 |
-
outputs = model.generate(
|
130 |
-
**inputs,
|
131 |
-
do_sample=True,
|
132 |
-
temperature=temperature,
|
133 |
-
max_new_tokens=max_new_tokens,
|
134 |
-
pad_token_id=tokenizer.pad_token_id
|
135 |
-
)
|
136 |
-
# WARNING: cannot use skip_special_tokens, because it blows away the FIM special tokens.
|
137 |
-
return [
|
138 |
-
extract_fim_part(tokenizer_fim.decode(tensor, skip_special_tokens=False)) for tensor in outputs
|
139 |
-
]
|
140 |
-
|
141 |
-
def code_generation(prompt: str, max_new_tokens: int, temperature: float = 0.2, seed: int = 42) -> str:
|
142 |
"""
|
143 |
Generates code based on the given prompt. Handles both regular and FIM (Fill-In-Missing) generation.
|
144 |
|
145 |
Args:
|
146 |
prompt (str): The input code prompt.
|
147 |
-
max_new_tokens (int): Maximum number of tokens to generate.
|
148 |
-
temperature (float, optional): Sampling temperature for generation. Defaults to 0.2.
|
149 |
-
seed (int, optional): Random seed for reproducibility. Defaults to 42.
|
150 |
|
151 |
Returns:
|
152 |
str: The HTML-styled generated code.
|
153 |
"""
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
completion = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_new_tokens)[0]['generated_text']
|
158 |
-
completion = completion[len(prompt):]
|
159 |
-
return post_processing(prompt, completion)
|
160 |
|
161 |
demo = gr.Blocks(
|
162 |
css=".gradio-container {background-color: #FAFBFF; color: #292b47}"
|
@@ -167,31 +112,11 @@ with demo:
|
|
167 |
with colum_2:
|
168 |
gr.Markdown(value=description)
|
169 |
code = gr.Code(lines=5, language="python", label="Input code", value="def nth_element_in_fibonnaci(element):\n \"\"\"Returns the nth element of the Fibonnaci sequence.\"\"\"")
|
170 |
-
|
171 |
-
with gr.Accordion("Additional settings", open=True):
|
172 |
-
max_new_tokens= gr.Slider(
|
173 |
-
minimum=8,
|
174 |
-
maximum=2048,
|
175 |
-
step=1,
|
176 |
-
value=80,
|
177 |
-
label="Number of tokens to generate",
|
178 |
-
)
|
179 |
-
temperature = gr.Slider(
|
180 |
-
minimum=0.1,
|
181 |
-
maximum=2.5,
|
182 |
-
step=0.01,
|
183 |
-
value=0.2,
|
184 |
-
label="Temperature",
|
185 |
-
)
|
186 |
-
seed = gr.inputs.Number(
|
187 |
-
default=42,
|
188 |
-
label="Enter a seed value (integer)"
|
189 |
-
)
|
190 |
run = gr.Button(value="π¨π½βπ» Generate code", size='lg')
|
191 |
output = gr.HTML(label="π» Your generated code")
|
192 |
|
193 |
|
194 |
-
event = run.click(code_generation, [code
|
195 |
gr.HTML(label="Keep in touch", value="<img src='https://huggingface.co/spaces/Deci/DeciCoder-Demo/resolve/main/deci-coder-banner.png' alt='Keep in touch' style='display: block; color: #292b47; margin: auto; max-width: 800px;'>")
|
196 |
|
197 |
demo.launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
description = """# <p style="text-align: center; color: #292b47;"> ποΈ <span style='color: #3264ff;'>DeciCoder-6B:</span> A Fast Code Generation Modelπ¨ </p>
|
5 |
+
<span style='color: #292b47;'>Welcome to <a href="https://huggingface.co/Deci/DeciCoder-6B" style="color: #3264ff;">DeciCoder</a>!
|
6 |
+
DeciCoder-6B was trained on the Python, Java, Javascript, Rust, C++, C, and C# subset of the Starcoder Training Dataset, and it's released under the Apache 2.0 license. This model is capable of code-completion and instruction following. It surpasses CodeGen 2.5 7B, CodeLlama 7B, abd StarCoder 7B in its supported languages on HumanEval, and leads by 3 points in Python over StarCoderBase 15.5B."""
|
7 |
|
8 |
+
GENERATION_TITLE= "<p style='font-size: 24px; color: #292b47;'>π» Your generated code:</p>"
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def instantiate_huggingface_model(
|
11 |
+
model_name,
|
12 |
+
quantization_config=None,
|
13 |
+
device_map="auto",
|
14 |
+
use_cache=True,
|
15 |
+
trust_remote_code=None,
|
16 |
+
pad_token=None,
|
17 |
+
padding_side="left"
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
Instantiate a HuggingFace model with optional quantization using the BitsAndBytes library.
|
21 |
+
|
22 |
+
Parameters:
|
23 |
+
- model_name (str): The name of the model to load from HuggingFace's model hub.
|
24 |
+
- quantization_config (BitsAndBytesConfig, optional): Configuration for model quantization.
|
25 |
+
If None, defaults to a pre-defined quantization configuration for 4-bit quantization.
|
26 |
+
- device_map (str, optional): Device placement strategy for model layers ('auto' by default).
|
27 |
+
- use_cache (bool, optional): Whether to cache model outputs (False by default).
|
28 |
+
- trust_remote_code (bool, optional): Whether to trust remote code for custom layers (True by default).
|
29 |
+
- pad_token (str, optional): The pad token to be used by the tokenizer. If None, uses the EOS token.
|
30 |
+
- padding_side (str, optional): The side on which to pad the sequences ('left' by default).
|
31 |
|
32 |
+
Returns:
|
33 |
+
- model (PreTrainedModel): The instantiated model ready for inference or fine-tuning.
|
34 |
+
- tokenizer (PreTrainedTokenizer): The tokenizer associated with the model.
|
35 |
|
36 |
+
The function will throw an exception if model loading fails.
|
37 |
+
"""
|
|
|
|
|
|
|
38 |
|
39 |
+
# If quantization_config is not provided, use the default configuration
|
40 |
+
if quantization_config is None:
|
41 |
+
quantization_config = BitsAndBytesConfig(
|
42 |
+
load_in_8bit=True,
|
43 |
+
low_cpu_mem_usage=True,
|
44 |
+
)
|
45 |
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
47 |
+
model_name,
|
48 |
+
quantization_config=quantization_config,
|
49 |
+
device_map=device_map,
|
50 |
+
use_cache=use_cache,
|
51 |
+
trust_remote_code=trust_remote_code
|
52 |
+
)
|
53 |
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
55 |
+
trust_remote_code=trust_remote_code)
|
|
|
|
|
56 |
|
57 |
+
if pad_token is not None:
|
58 |
+
tokenizer.pad_token = pad_token
|
59 |
+
else:
|
60 |
+
tokenizer.pad_token = tokenizer.eos_token
|
61 |
+
|
62 |
+
tokenizer.padding_side = padding_side
|
63 |
|
64 |
+
return model, tokenizer
|
65 |
|
66 |
+
model, tokenizer = instantiate_huggingface_model("Deci-early-access/DeciCoder-6B", trust_remote_code=True)
|
67 |
+
|
68 |
+
pipe = pipeline("text-generation",
|
69 |
+
model=model,
|
70 |
+
tokenizer=tokenizer,
|
71 |
+
device_map="auto",
|
72 |
+
max_length=2048,
|
73 |
+
temperature=1e-3,
|
74 |
+
)
|
75 |
|
76 |
def post_processing(prompt: str, completion: str) -> str:
|
77 |
"""
|
|
|
88 |
prompt = "<span style='color: #7484b7;'>" + prompt + "</span>"
|
89 |
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prompt}{completion}</code></pre><br><hr>"
|
90 |
return GENERATION_TITLE + code_html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
def code_generation(prompt: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
"""
|
94 |
Generates code based on the given prompt. Handles both regular and FIM (Fill-In-Missing) generation.
|
95 |
|
96 |
Args:
|
97 |
prompt (str): The input code prompt.
|
|
|
|
|
|
|
98 |
|
99 |
Returns:
|
100 |
str: The HTML-styled generated code.
|
101 |
"""
|
102 |
+
completion = pipe(prompt)[0]['generated_text']
|
103 |
+
completion = completion[len(prompt):]
|
104 |
+
return post_processing(prompt, completion)
|
|
|
|
|
|
|
105 |
|
106 |
demo = gr.Blocks(
|
107 |
css=".gradio-container {background-color: #FAFBFF; color: #292b47}"
|
|
|
112 |
with colum_2:
|
113 |
gr.Markdown(value=description)
|
114 |
code = gr.Code(lines=5, language="python", label="Input code", value="def nth_element_in_fibonnaci(element):\n \"\"\"Returns the nth element of the Fibonnaci sequence.\"\"\"")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
run = gr.Button(value="π¨π½βπ» Generate code", size='lg')
|
116 |
output = gr.HTML(label="π» Your generated code")
|
117 |
|
118 |
|
119 |
+
event = run.click(code_generation, [code], output)
|
120 |
gr.HTML(label="Keep in touch", value="<img src='https://huggingface.co/spaces/Deci/DeciCoder-Demo/resolve/main/deci-coder-banner.png' alt='Keep in touch' style='display: block; color: #292b47; margin: auto; max-width: 800px;'>")
|
121 |
|
122 |
demo.launch()
|