Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import nltk | |
import torch | |
model_name = "afnanmmir/t5-base-abstract-to-plain-language-1" | |
# model_name = "afnanmmir/t5-base-axriv-to-abstract-3" | |
max_input_length = 1024 | |
max_output_length = 256 | |
st.header("Generate summaries") | |
st_model_load = st.text('Loading summary generator model...') | |
# # @st.cache(allow_output_mutation=True) | |
def load_model(): | |
print("Loading model...") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
nltk.download('punkt') | |
print("Model loaded!") | |
tokenizer, model = load_model() | |
st.success('Model loaded!') | |
st_model_load.text("") | |
# with st.sidebar: | |
# st.header("Model parameters") | |
# if 'num_titles' not in st.session_state: | |
# st.session_state.num_titles = 5 | |
# def on_change_num_titles(): | |
# st.session_state.num_titles = num_titles | |
# num_titles = st.slider("Number of titles to generate", min_value=1, max_value=10, value=1, step=1, on_change=on_change_num_titles) | |
# if 'temperature' not in st.session_state: | |
# st.session_state.temperature = 0.7 | |
# def on_change_temperatures(): | |
# st.session_state.temperature = temperature | |
# temperature = st.slider("Temperature", min_value=0.1, max_value=1.5, value=0.6, step=0.05, on_change=on_change_temperatures) | |
# st.markdown("_High temperature means that results are more random_") | |
if 'text' not in st.session_state: | |
st.session_state.text = "" | |
st_text_area = st.text_area('Text to generate the summary for', value=st.session_state.text, height=500) | |
def generate_summary(): | |
st.session_state.text = st_text_area | |
# tokenize text | |
inputs = ["summarize: " + st_text_area] | |
# print(inputs) | |
inputs = tokenizer(inputs, return_tensors="pt", max_length=max_input_length, truncation=True) | |
print("Tokenized inputs: ") | |
# print(inputs) | |
# inputs = tokenizer(inputs, return_tensors="pt") | |
# # compute span boundaries | |
# num_tokens = len(inputs["input_ids"][0]) | |
# print(f"Input has {num_tokens} tokens") | |
# max_input_length = 500 | |
# num_spans = math.ceil(num_tokens / max_input_length) | |
# print(f"Input has {num_spans} spans") | |
# overlap = math.ceil((num_spans * max_input_length - num_tokens) / max(num_spans - 1, 1)) | |
# spans_boundaries = [] | |
# start = 0 | |
# for i in range(num_spans): | |
# spans_boundaries.append([start + max_input_length * i, start + max_input_length * (i + 1)]) | |
# start -= overlap | |
# print(f"Span boundaries are {spans_boundaries}") | |
# spans_boundaries_selected = [] | |
# j = 0 | |
# for _ in range(num_titles): | |
# spans_boundaries_selected.append(spans_boundaries[j]) | |
# j += 1 | |
# if j == len(spans_boundaries): | |
# j = 0 | |
# print(f"Selected span boundaries are {spans_boundaries_selected}") | |
# # transform input with spans | |
# tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected] | |
# tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected] | |
# inputs = { | |
# "input_ids": torch.stack(tensor_ids), | |
# "attention_mask": torch.stack(tensor_masks) | |
# } | |
# compute predictions | |
# outputs = model.generate(**inputs, do_sample=True, temperature=temperature, max_length=max_output_length) | |
outputs = model.generate(**inputs, do_sample=True, max_length=max_output_length, early_stopping=True, num_beams=8, length_penalty=2.0, no_repeat_ngram_size=2, min_length=64) | |
# print("outputs", outputs) | |
decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
# print("Decoded_outputs", decoded_outputs) | |
predicted_summaries = nltk.sent_tokenize(decoded_outputs.strip()) | |
# print("Predicted summaries", predicted_summaries) | |
# decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
# predicted_summaries = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs] | |
st.session_state.summaries = predicted_summaries | |
# generate title button | |
st_generate_button = st.button('Generate summary', on_click=generate_summary) | |
# title generation labels | |
if 'summaries' not in st.session_state: | |
st.session_state.summaries = [] | |
if len(st.session_state.summaries) > 0: | |
# print("In summaries if") | |
with st.container(): | |
st.subheader("Generated summaries") | |
st.markdown(f"{' '.join(st.session_state.summaries)}") | |