Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from PIL import Image
|
3 |
+
from io import BytesIO
|
4 |
+
import base64
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import CLIPProcessor, CLIPModel
|
7 |
+
|
8 |
+
# Replace with your own API key
|
9 |
+
STABLE_DIFFUSION_API_KEY = "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"
|
10 |
+
|
11 |
+
# Load the CLIP model and processor
|
12 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
13 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
14 |
+
|
15 |
+
def get_mood_from_image(image: Image.Image):
|
16 |
+
moods = ["happy", "sad", "angry", "neutral"]
|
17 |
+
prompt = "The mood of the person in this image is: "
|
18 |
+
|
19 |
+
# Convert the image to base64
|
20 |
+
buffered = BytesIO()
|
21 |
+
image.save(buffered, format="JPEG")
|
22 |
+
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
23 |
+
|
24 |
+
# Create text prompts for each mood
|
25 |
+
text_inputs = [f"{prompt}{mood}" for mood in moods]
|
26 |
+
|
27 |
+
# Prepare the inputs for the model
|
28 |
+
inputs = processor(text=text_inputs, images=image, return_tensors="pt", padding=True)
|
29 |
+
|
30 |
+
# Run the model
|
31 |
+
logits = model(**inputs).logits
|
32 |
+
probs = logits.softmax(dim=-1).tolist()
|
33 |
+
|
34 |
+
# Calculate the scores for each mood
|
35 |
+
mood_scores = {}
|
36 |
+
for mood, score in zip(moods, probs[0]):
|
37 |
+
mood_scores[mood] = score
|
38 |
+
|
39 |
+
# Filter moods with a score above 60%
|
40 |
+
filtered_moods = {k: v for k, v in mood_scores.items() if v > 0.6}
|
41 |
+
|
42 |
+
if len(filtered_moods) < 2:
|
43 |
+
return None
|
44 |
+
|
45 |
+
# Select the mood with the highest score
|
46 |
+
selected_mood = max(filtered_moods, key=filtered_moods.get)
|
47 |
+
return selected_mood
|
48 |
+
|
49 |
+
def generate_art(mood):
|
50 |
+
# Implement art generation logic using the Stable Diffusion API
|
51 |
+
prompt = f"{mood} generative art"
|
52 |
+
|
53 |
+
headers = {
|
54 |
+
"Authorization": f"Bearer {STABLE_DIFFUSION_API_KEY}"
|
55 |
+
}
|
56 |
+
|
57 |
+
json_data = {
|
58 |
+
"inputs": prompt
|
59 |
+
}
|
60 |
+
|
61 |
+
response = requests.post('https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5', headers=headers, json=json_data).json()
|
62 |
+
|
63 |
+
# Extract the generated image URL from the response
|
64 |
+
image_url = response["generated_images"][0]["url"]
|
65 |
+
|
66 |
+
# Download the image and return it as a PIL Image
|
67 |
+
image_response = requests.get(image_url)
|
68 |
+
image = Image.open(BytesIO(image_response.content))
|
69 |
+
|
70 |
+
return image
|
71 |
+
|
72 |
+
def mood_art_generator(image: Image.Image):
|
73 |
+
mood = get_mood_from_image(image)
|
74 |
+
if mood:
|
75 |
+
art = generate_art(mood)
|
76 |
+
return art
|
77 |
+
else:
|
78 |
+
return None
|
79 |
+
|
80 |
+
image_input = gr.inputs.Image()
|
81 |
+
outputs = gr.outputs.Image(label="Generated Artwork")
|
82 |
+
|
83 |
+
interface = gr.Interface(
|
84 |
+
fn=mood_art_generator,
|
85 |
+
inputs=image_input,
|
86 |
+
outputs=outputs,
|
87 |
+
title="Mood-based Art Generator",
|
88 |
+
description="Upload an image of yourself and let the AI generate artwork based on your mood.",
|
89 |
+
)
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
interface.launch()
|