Spaces:
Runtime error
Runtime error
Trying to better it
Browse files
app.py
CHANGED
@@ -15,14 +15,20 @@ model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
15 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
16 |
|
17 |
def get_mood_from_image(image: Image.Image):
|
18 |
-
moods = ["
|
19 |
-
prompt = "The mood of the person in this image is: "
|
20 |
|
21 |
-
# Create
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Prepare the inputs for the model
|
25 |
-
inputs = processor(text=
|
26 |
|
27 |
# Run the model
|
28 |
logits = model(**inputs).logits_per_image
|
@@ -40,10 +46,9 @@ def get_mood_from_image(image: Image.Image):
|
|
40 |
|
41 |
def generate_art(mood):
|
42 |
# Implement art generation logic using the Stable Diffusion API
|
43 |
-
prompt = f"{mood} generative art with vibrant colors and intricate patterns"
|
44 |
-
|
45 |
-
|
46 |
-
request_headers = {
|
47 |
"Authorization": f"Bearer {STABLE_DIFFUSION_API_KEY}",
|
48 |
"Accept": "image/jpeg", # Set the Accept header to receive an image directly
|
49 |
}
|
@@ -53,11 +58,9 @@ def generate_art(mood):
|
|
53 |
}
|
54 |
|
55 |
while True:
|
56 |
-
|
57 |
-
response = requests.post('https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5', headers=request_headers, json=json_data)
|
58 |
|
59 |
-
|
60 |
-
if response.status_code == 503: # Model is loading
|
61 |
print("Model is loading, waiting for 30 seconds before retrying...")
|
62 |
time.sleep(30)
|
63 |
continue
|
@@ -70,24 +73,34 @@ def generate_art(mood):
|
|
70 |
|
71 |
break
|
72 |
|
73 |
-
# Load the image directly from the response content
|
74 |
image = Image.open(BytesIO(response.content))
|
75 |
|
76 |
return image
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def mood_art_generator(image):
|
79 |
mood = get_mood_from_image(image)
|
80 |
print("Mood:", mood)
|
81 |
if mood:
|
82 |
art = generate_art(mood)
|
83 |
-
|
|
|
|
|
84 |
else:
|
85 |
-
return None
|
86 |
|
87 |
iface = gr.Interface(
|
88 |
fn=mood_art_generator,
|
89 |
inputs=gr.inputs.Image(shape=(224, 224), image_mode="RGB", source="upload"),
|
90 |
-
outputs=gr.outputs.Image(type="pil"),
|
91 |
title="Mood-based Art Generator",
|
92 |
description="Upload an image of yourself and let the AI generate artwork based on your mood.",
|
93 |
allow_flagging=False,
|
@@ -96,3 +109,4 @@ iface = gr.Interface(
|
|
96 |
)
|
97 |
|
98 |
iface.launch()
|
|
|
|
15 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
16 |
|
17 |
def get_mood_from_image(image: Image.Image):
|
18 |
+
moods = ["fear", "anger", "joy", "sadness", "disgust", "surprise"]
|
|
|
19 |
|
20 |
+
# Create unique prompts for each mood
|
21 |
+
prompts = [
|
22 |
+
"The emotion conveyed by this image is fear. The person looks scared and tense.",
|
23 |
+
"The emotion conveyed by this image is anger. The person looks furious and irritated.",
|
24 |
+
"The emotion conveyed by this image is joy. The person looks happy and cheerful.",
|
25 |
+
"The emotion conveyed by this image is sadness. The person looks unhappy and gloomy.",
|
26 |
+
"The emotion conveyed by this image is disgust. The person looks repulsed and sickened.",
|
27 |
+
"The emotion conveyed by this image is surprise. The person looks astonished and amazed.",
|
28 |
+
]
|
29 |
|
30 |
# Prepare the inputs for the model
|
31 |
+
inputs = processor(text=prompts, images=image, return_tensors="pt", padding=True)
|
32 |
|
33 |
# Run the model
|
34 |
logits = model(**inputs).logits_per_image
|
|
|
46 |
|
47 |
def generate_art(mood):
|
48 |
# Implement art generation logic using the Stable Diffusion API
|
49 |
+
prompt = f"{mood} generative art with vibrant colors and intricate patterns ({str(np.random.randint(1, 10000))})"
|
50 |
+
|
51 |
+
headers = {
|
|
|
52 |
"Authorization": f"Bearer {STABLE_DIFFUSION_API_KEY}",
|
53 |
"Accept": "image/jpeg", # Set the Accept header to receive an image directly
|
54 |
}
|
|
|
58 |
}
|
59 |
|
60 |
while True:
|
61 |
+
response = requests.post('https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5', headers=headers, json=json_data)
|
|
|
62 |
|
63 |
+
if response.status_code == 503:
|
|
|
64 |
print("Model is loading, waiting for 30 seconds before retrying...")
|
65 |
time.sleep(30)
|
66 |
continue
|
|
|
73 |
|
74 |
break
|
75 |
|
|
|
76 |
image = Image.open(BytesIO(response.content))
|
77 |
|
78 |
return image
|
79 |
|
80 |
+
mood_emojis = {
|
81 |
+
"fear": "😨",
|
82 |
+
"anger": "😠",
|
83 |
+
"joy": "😄",
|
84 |
+
"sadness": "😢",
|
85 |
+
"disgust": "🤢",
|
86 |
+
"surprise": "😮",
|
87 |
+
}
|
88 |
+
|
89 |
def mood_art_generator(image):
|
90 |
mood = get_mood_from_image(image)
|
91 |
print("Mood:", mood)
|
92 |
if mood:
|
93 |
art = generate_art(mood)
|
94 |
+
emoji = mood_emojis[mood]
|
95 |
+
output_text = f"You seem to be {mood} {emoji}. Here's an artwork representing it!"
|
96 |
+
return art, output_text
|
97 |
else:
|
98 |
+
return None, "Failed to generate artwork."
|
99 |
|
100 |
iface = gr.Interface(
|
101 |
fn=mood_art_generator,
|
102 |
inputs=gr.inputs.Image(shape=(224, 224), image_mode="RGB", source="upload"),
|
103 |
+
outputs=[gr.outputs.Image(type="pil"), gr.outputs.Textbox()],
|
104 |
title="Mood-based Art Generator",
|
105 |
description="Upload an image of yourself and let the AI generate artwork based on your mood.",
|
106 |
allow_flagging=False,
|
|
|
109 |
)
|
110 |
|
111 |
iface.launch()
|
112 |
+
|