afrizalha commited on
Commit
2e4a4ab
·
verified ·
1 Parent(s): c1bb5d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -15
app.py CHANGED
@@ -10,15 +10,15 @@ tinier = AutoModelForCausalLM.from_pretrained("afrizalha/Sasando-1-7M", token=hf
10
 
11
  desc = """Sasando-1 is a tiny, highly experimental text generator built using the Phi-3 architecture. It comes with two variations of microscopic sizes: 7M and 25M parameters. It is trained on a tightly-controlled Indo4B dataset filtered to only have 18000 unique words. The method is inspired by Microsoft's TinyStories paper which demonstrates that a tiny language model can produce fluent text when trained on tightly-controlled dataset.\n\nTry prompting with two simple words, and let the model continue. Fun examples provided below."""
12
 
13
- def generate(starting_text, choice, temp, top_p):
 
 
 
14
  if choice == '7M':
15
  model = tinier
16
  elif choice == '25M':
17
  model = tiny
18
- elif choice == 'Info':
19
- yield desc
20
- return
21
-
22
  results = []
23
  for i in range(5):
24
  inputs = tokenizer([starting_text], return_tensors="pt").to(model.device)
@@ -32,23 +32,30 @@ def generate(starting_text, choice, temp, top_p):
32
  outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
33
  outputs = outputs[:outputs.find(".")]
34
  results.append(outputs)
35
- yield "\n\n".join(results)
36
-
37
  with gr.Blocks(theme=gr.themes.Soft()) as app:
38
  starting_text = gr.Textbox(label="Starting text", value="cinta adalah")
39
- choice = gr.Radio(["7M", "25M", "Info"], label="Select model", info="Built with the Phi-3 architecture", value='Info')
40
- # num_runs = gr.Slider(label="Number of examples", minimum=1, maximum=10, step=1, value=5)
41
- temp = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7)
42
- top_p = gr.Slider(label="Top P", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
 
 
 
43
  res = gr.Textbox(label="Continuation")
 
44
  gr.Interface(
45
  fn=generate,
46
- inputs=[starting_text,choice,temp,top_p],
47
  outputs=[res],
48
  allow_flagging="never",
49
  title="Sasando-1",
50
- )
51
- examples=gr.Examples([["gue"], ["presiden"], ["cinta adalah"], ["allah, aku"], ["dia marah karena"],
52
- ["inflasi"], ["kolam renang"], ["messi"], ["jalan-jalan"], ["komputer itu"]], [starting_text])
 
 
 
53
 
54
  app.launch()
 
10
 
11
  desc = """Sasando-1 is a tiny, highly experimental text generator built using the Phi-3 architecture. It comes with two variations of microscopic sizes: 7M and 25M parameters. It is trained on a tightly-controlled Indo4B dataset filtered to only have 18000 unique words. The method is inspired by Microsoft's TinyStories paper which demonstrates that a tiny language model can produce fluent text when trained on tightly-controlled dataset.\n\nTry prompting with two simple words, and let the model continue. Fun examples provided below."""
12
 
13
+ def generate(starting_text=None, choice=None, temp=None, top_p=None, info=False):
14
+ if info:
15
+ return desc
16
+
17
  if choice == '7M':
18
  model = tinier
19
  elif choice == '25M':
20
  model = tiny
21
+
 
 
 
22
  results = []
23
  for i in range(5):
24
  inputs = tokenizer([starting_text], return_tensors="pt").to(model.device)
 
32
  outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
33
  outputs = outputs[:outputs.find(".")]
34
  results.append(outputs)
35
+ return "\n\n".join(results)
36
+
37
  with gr.Blocks(theme=gr.themes.Soft()) as app:
38
  starting_text = gr.Textbox(label="Starting text", value="cinta adalah")
39
+ choice = gr.Radio(["7M", "25M"], label="Select model", value="7M")
40
+ info_button = gr.Button("Info")
41
+
42
+ with gr.Row():
43
+ temp = gr.Slider(label="Temperature", minimum=0.05, maximum=1.0, step=0.05, value=0.7)
44
+ top_p = gr.Slider(label="Top P", minimum=0.05, maximum=1.0, step=0.05, value=0.5)
45
+
46
  res = gr.Textbox(label="Continuation")
47
+
48
  gr.Interface(
49
  fn=generate,
50
+ inputs=[starting_text, choice, temp, top_p, info_button],
51
  outputs=[res],
52
  allow_flagging="never",
53
  title="Sasando-1",
54
+ )
55
+
56
+ examples = gr.Examples([
57
+ ["gue"], ["presiden"], ["cinta adalah"], ["allah, aku"], ["dia marah karena"],
58
+ ["inflasi"], ["kolam renang"], ["messi"], ["jalan-jalan"], ["komputer itu"]
59
+ ], [starting_text])
60
 
61
  app.launch()