Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
hf_token= os.getenv("access_token")
|
4 |
+
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("afrizalha/Sasando-1-25M", token=hf_token)
|
8 |
+
tiny = AutoModelForCausalLM.from_pretrained("afrizalha/Sasando-1-25M", token=hf_token)
|
9 |
+
tinier = AutoModelForCausalLM.from_pretrained("afrizalha/Sasando-1-7M", token=hf_token)
|
10 |
+
|
11 |
+
|
12 |
+
desc = """Sasando-1 is a tiny, highly experimental text generator built using the Phi-3 architecture. It comes with two variations of microscopic sizes: 7M and 25M parameters. It is trained on a tightly-controlled Indo4B dataset filtered to only have 18000 unique words. The method is inspired by Microsoft's TinyStories paper which demonstrates that a tiny language model can produce fluent text when trained on tightly-controlled dataset."""
|
13 |
+
|
14 |
+
def generate(starting_text, choice, num_runs,temp,top_p):
|
15 |
+
if choice == '7M':
|
16 |
+
model = tinier
|
17 |
+
elif choice == '25M':
|
18 |
+
model = tiny
|
19 |
+
elif choice == 'Info':
|
20 |
+
return desc
|
21 |
+
|
22 |
+
results = []
|
23 |
+
for i in range(num_runs):
|
24 |
+
inputs = tokenizer([starting_text], return_tensors="pt").to(model.device)
|
25 |
+
outputs = model.generate(
|
26 |
+
inputs=inputs.input_ids,
|
27 |
+
max_new_tokens=32-len(inputs.input_ids),
|
28 |
+
do_sample=True,
|
29 |
+
temperature=temp,
|
30 |
+
top_p=top_p
|
31 |
+
)
|
32 |
+
outputs = tokenizer.batch_decode(outputs,skip_special_tokens=True)[0]
|
33 |
+
outputs = outputs[:outputs.find(".")]
|
34 |
+
results.append(outputs)
|
35 |
+
yield "\n\n".join(results)
|
36 |
+
|
37 |
+
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
38 |
+
starting_text = gr.Textbox(label="Starting text", value="cinta adalah")
|
39 |
+
choice = gr.Radio(["7M", "25M"], label="Model size", info="Built with the Phi-3 architecture")
|
40 |
+
num_runs = gr.Slider(label="Number of examples", minimum=1, maximum=10, step=1, value=5)
|
41 |
+
temp = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7)
|
42 |
+
top_p = gr.Slider(label="Top P", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
|
43 |
+
res = gr.Textbox(label="Continuation")
|
44 |
+
gr.Interface(
|
45 |
+
fn=generate,
|
46 |
+
inputs=[starting_text,choice,num_runs,temp,top_p],
|
47 |
+
outputs=[res],
|
48 |
+
allow_flagging="never",
|
49 |
+
title="Sasando-1",
|
50 |
+
)
|
51 |
+
examples=gr.Examples([["gue"], ["presiden"], ["cinta adalah"], ["allah, aku"]], [starting_text])
|
52 |
+
|
53 |
+
app.launch(share=True)
|