import os import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM hf_token= os.getenv("access_token") tokenizer = AutoTokenizer.from_pretrained("afrizalha/Sasando-1-25M", token=hf_token) tiny = AutoModelForCausalLM.from_pretrained("afrizalha/Sasando-1-25M", token=hf_token) tinier = AutoModelForCausalLM.from_pretrained("afrizalha/Sasando-1-7M", token=hf_token) desc = """Sasando-1 is a tiny, highly experimental text generator built using the Phi-3 architecture. It comes with two variations of microscopic sizes: 7M and 25M parameters. It is trained on a tightly-controlled Indo4B dataset filtered to only have 18000 unique words. The method is inspired by Microsoft's TinyStories paper which demonstrates that a tiny language model can produce fluent text when trained on tightly-controlled dataset.\n\nTry prompting with two simple words, and let the model continue. Fun examples provided below.""" def generate(starting_text=None, choice=None, temp=None, top_p=None): if info: return desc if choice == '7M': model = tinier elif choice == '25M': model = tiny elif choice == "Info": return desc results = [] for i in range(5): inputs = tokenizer([starting_text], return_tensors="pt").to(model.device) outputs = model.generate( inputs=inputs.input_ids, max_new_tokens=32-len(inputs.input_ids[0]), do_sample=True, temperature=temp, top_p=top_p ) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] outputs = outputs[:outputs.find(".")] results.append(outputs) return "\n\n".join(results) with gr.Blocks(theme=gr.themes.Soft()) as app: starting_text = gr.Textbox(label="Starting text", value="cinta adalah") choice = gr.Radio(["7M", "25M", "Info"], label="Select model", info="Built with the Phi-3 architecture", value='Info') with gr.Row() as slider_options: temp = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7) top_p = gr.Slider(label="Top P", minimum=0.1, maximum=1.0, step=0.1, value=0.5) res = gr.Textbox(label="Continuation") gr.Interface( fn=generate, inputs=[starting_text, choice, slider_options], outputs=[res], allow_flagging="never", title="Sasando-1", ) examples = gr.Examples([ ["gue"], ["presiden"], ["cinta adalah"], ["allah, aku"], ["dia marah karena"], ["inflasi"], ["kolam renang"], ["messi"], ["jalan-jalan"], ["komputer itu"] ], [starting_text]) app.launch()