File size: 2,031 Bytes
a8ed80e
 
5dd6796
 
600d127
 
 
a8ed80e
5dd6796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d01a68b
600d127
5dd6796
db576dc
 
600d127
 
 
5dd6796
868109e
a8ed80e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr

import getpass
import os
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
from langchain_community.llms import HuggingFaceEndpoint

if "HUGGINGFACEHUB_API_TOKEN" not in os.environ:
    os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv('hf_token')

from langchain.document_loaders import TextLoader
loader = TextLoader('./Agentville Academy.txt')
documents = loader.load()

import textwrap

def wrap_text_preserve_newlines(text, width=110):
    # Split the input text into lines based on newline characters
    lines = text.split('\n')

    # Wrap each line individually
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]

    # Join the wrapped lines back together using newline characters
    wrapped_text = '\n'.join(wrapped_lines)

    return wrapped_text

# Text Splitter
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

# Embeddings
from langchain.embeddings import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings()

# Vectorstore: https://python.langchain.com/en/latest/modules/indexes/vectorstores.html
from langchain.vectorstores import FAISS

db = FAISS.from_documents(docs, embeddings)
llm=HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", temperature=0.2, max_length=512)
chain = load_qa_chain(llm, chain_type="stuff")

def get_answer(query):
    docs = db.similarity_search(query)
    response = chain.run(input_documents=docs, question=query)
    #return wrap_text_preserve_newlines(str(docs[0].page_content))
    return response

demo = gr.Interface(fn=get_answer, inputs="text", theme=gr.themes.Glass(), outputs=gr.Markdown(), title="Agentville Academy: Where your Agent knowledge goes from zero to expert!", examples=['What is MemGPT?','Generate a learning plan for mastering autonomous agents','What is the difference between an LLM and an agent?'])
demo.launch()