import gradio as gr import getpass import os from langchain.chains.question_answering import load_qa_chain from langchain import HuggingFaceHub from langchain_community.llms import HuggingFaceEndpoint if "HUGGINGFACEHUB_API_TOKEN" not in os.environ: os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv('hf_token') from langchain.document_loaders import TextLoader loader = TextLoader('./Agentville Academy.txt') documents = loader.load() import textwrap def wrap_text_preserve_newlines(text, width=110): # Split the input text into lines based on newline characters lines = text.split('\n') # Wrap each line individually wrapped_lines = [textwrap.fill(line, width=width) for line in lines] # Join the wrapped lines back together using newline characters wrapped_text = '\n'.join(wrapped_lines) return wrapped_text # Text Splitter from langchain.text_splitter import CharacterTextSplitter text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) # Embeddings from langchain.embeddings import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings() # Vectorstore: https://python.langchain.com/en/latest/modules/indexes/vectorstores.html from langchain.vectorstores import FAISS db = FAISS.from_documents(docs, embeddings) llm=HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", temperature=0.2, max_length=512) chain = load_qa_chain(llm, chain_type="stuff") def get_answer(query): docs = db.similarity_search(query) response = chain.run(input_documents=docs, question=query) #return wrap_text_preserve_newlines(str(docs[0].page_content)) return response demo = gr.Interface(fn=get_answer, inputs="text", theme=gr.themes.Glass(), outputs=gr.Markdown(), title="Agentville Academy: Where your Agent knowledge goes from zero to expert!", examples=['What is MemGPT?','Generate a learning plan for mastering autonomous agents','What is the difference between an LLM and an agent?']) demo.launch()