File size: 12,247 Bytes
b5d547f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
from smolagents import Tool
from openai import OpenAI
from .speech_recognition_tool import SpeechRecognitionTool
from io import BytesIO
import yt_dlp
import av
import torchaudio
import subprocess
import requests
import base64


class YoutubeVideoTool(Tool):
    name = "youtube_video"
    description = """Process the video and return the requested information from it."""
    inputs = {
        "url": {
            "type": "string",
            "description": "The URL of the YouTube video.",
        },
        "query": {
            "type": "string",
            "description": "The question to answer.",
        },
    }
    output_type = "string"

    def __init__(
            self,
            video_quality: int = 360,
            frames_interval: int | float | None = 2,
            chunk_duration: int | float | None = 20,
            speech_recognition_tool: SpeechRecognitionTool | None = None,
            client: OpenAI | None = None,
            model_id: str = "gpt-4.1-mini",
            debug: bool = False,
            **kwargs,
    ):
        self.video_quality = video_quality
        self.speech_recognition_tool = speech_recognition_tool
        self.frames_interval = frames_interval
        self.chunk_duration = chunk_duration

        self.client = client or OpenAI()
        self.model_id = model_id

        self.debug = debug

        super().__init__(**kwargs)

    def forward(self, url: str, query: str):
        """
        Process the video and return the requested information.
        Args:
            url (str): The URL of the YouTube video.
            query (str): The question to answer.
        Returns:
            str: Answer to the query.
        """
        answer = ""
        for chunk in self._split_video_into_chunks(url):
            prompt = self._prompt(
                chunk,
                query,
                answer,
            )
            response = self.client.responses.create(
                model="gpt-4.1-mini",
                input=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "input_text",
                                "text": prompt,
                            },
                            *[
                                {
                                    "type": "input_image",
                                    "image_url": f"data:image/jpeg;base64,{frame}",
                                }
                                for frame in self._base64_frames(chunk["frames"])
                            ],
                        ],
                    }
                ],
            )
            answer = response.output_text
            if self.debug:
                print(
                    f"CHUNK {chunk['start']} - {chunk['end']}:\n\n{prompt}\n\nANSWER:\n{answer}"
                )

        if answer.strip() == "I need to keep watching":
            answer = ""
        return answer

    def _prompt(self, chunk, query, aggregated_answer):
        prompt = [
            f"""\
These are some frames of a video that I want to upload.
I will ask a question about the entire video, but I will only last part of it.
Aggregate answer about the entire video, use information about previous parts but do not reference the previous parts in the answer directly.

Ground your answer based on video title, description, captions, vide frames or answer from previous parts.
If no evidences presented just say "I need to keep watching".

VIDEO TITLE:
{chunk["title"]}

VIDEO DESCRIPTION:
{chunk["description"]}

FRAMES SUBTITLES:
{chunk["captions"]}"""
        ]

        if aggregated_answer:
            prompt.append(f"""\
Here is the answer to the same question based on the previous video parts:
                          
BASED ON PREVIOUS PARTS:
{aggregated_answer}""")

        prompt.append(f"""\
                      
QUESTION:
{query}""")

        return "\n\n".join(prompt)

    def _split_video_into_chunks(
            self, url: str, with_captions: bool = True, with_frames: bool = True
    ):
        video = self._process_video(
            url, with_captions=with_captions, with_frames=with_frames
        )
        video_duration = video["duration"]
        chunk_duration = self.chunk_duration or video_duration

        chunk_start = 0.0
        while chunk_start < video_duration:
            chunk_end = min(chunk_start + chunk_duration, video_duration)
            chunk = self._get_video_chunk(video, chunk_start, chunk_end)
            yield chunk
            chunk_start += chunk_duration

    def _get_video_chunk(self, video, start, end):
        chunk_captions = [
            c for c in video["captions"] if c["start"] <= end and c["end"] >= start
        ]
        chunk_frames = [
            f
            for f in video["frames"]
            if f["timestamp"] >= start and f["timestamp"] <= end
        ]

        return {
            "title": video["title"],
            "description": video["description"],
            "start": start,
            "end": end,
            "captions": "\n".join([c["text"] for c in chunk_captions]),
            "frames": chunk_frames,
        }

    def _process_video(
            self, url: str, with_captions: bool = True, with_frames: bool = True
    ):
        lang = "en"
        info = self._get_video_info(url, lang)

        if with_captions:
            captions = self._extract_captions(
                lang, info.get("subtitles", {}), info.get("automatic_captions", {})
            )
            if not captions and self.speech_recognition_tool:
                audio_url = self._select_audio_format(info["formats"])
                audio = self._capture_audio(audio_url)
                waveform, sample_rate = torchaudio.load(audio)
                assert sample_rate == 16000
                waveform_np = waveform.squeeze().numpy()
                captions = self.speech_recognition_tool.transcribe(waveform_np)
        else:
            captions = []

        if with_frames:
            video_url = self._select_video_format(info["formats"], 360)["url"]
            frames = self._capture_video_frames(video_url, self.frames_interval)
        else:
            frames = []

        return {
            "id": info["id"],
            "title": info["title"],
            "description": info["description"],
            "duration": info["duration"],
            "captions": captions,
            "frames": frames,
        }

    def _get_video_info(self, url: str, lang: str):
        ydl_opts = {
            "quiet": True,
            "skip_download": True,
            "format": "bestvideo[ext=mp4][height<=360]+bestaudio[ext=m4a]/best[height<=360]",
            "forceurl": True,
            "noplaylist": True,
            "writesubtitles": True,
            "writeautomaticsub": True,
            "subtitlesformat": "vtt",
            "subtitleslangs": [lang],
        }

        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(url, download=False)

        return info

    def _extract_captions(self, lang, subtitles, auto_captions):
        caption_tracks = subtitles.get(lang) or auto_captions.get(lang) or []

        structured_captions = []

        srt_track = next(
            (track for track in caption_tracks if track["ext"] == "srt"), None
        )
        vtt_track = next(
            (track for track in caption_tracks if track["ext"] == "vtt"), None
        )

        if srt_track:
            import pysrt

            response = requests.get(srt_track["url"])
            response.raise_for_status()
            srt_data = response.content.decode("utf-8")

            def to_sec(t):
                return (
                        t.hours * 3600 + t.minutes * 60 + t.seconds + t.milliseconds / 1000
                )

            structured_captions = [
                {
                    "start": to_sec(sub.start),
                    "end": to_sec(sub.end),
                    "text": sub.text.strip(),
                }
                for sub in pysrt.from_str(srt_data)
            ]
        if vtt_track:
            import webvtt
            from io import StringIO

            response = requests.get(vtt_track["url"])
            response.raise_for_status()
            vtt_data = response.text

            vtt_file = StringIO(vtt_data)

            def to_sec(t):
                """Convert 'HH:MM:SS.mmm' to float seconds"""
                h, m, s = t.split(":")
                s, ms = s.split(".")
                return int(h) * 3600 + int(m) * 60 + int(s) + int(ms) / 1000

            for caption in webvtt.read_buffer(vtt_file):
                structured_captions.append(
                    {
                        "start": to_sec(caption.start),
                        "end": to_sec(caption.end),
                        "text": caption.text.strip(),
                    }
                )
        return structured_captions

    def _select_video_format(self, formats, video_quality):
        video_format = next(
            f
            for f in formats
            if f.get("vcodec") != "none" and f.get("height") == video_quality
        )
        return video_format

    def _capture_video_frames(self, video_url, capture_interval_sec=None):
        ffmpeg_cmd = [
            "ffmpeg",
            "-i",
            video_url,
            "-f",
            "matroska",  # container format
            "-",
        ]

        process = subprocess.Popen(
            ffmpeg_cmd, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL
        )

        container = av.open(process.stdout)
        stream = container.streams.video[0]
        time_base = stream.time_base

        frames = []
        next_capture_time = 0
        for frame in container.decode(stream):
            if frame.pts is None:
                continue

            timestamp = float(frame.pts * time_base)
            if capture_interval_sec is None or timestamp >= next_capture_time:
                frames.append(
                    {
                        "timestamp": timestamp,
                        "image": frame.to_image(),  # PIL image
                    }
                )
                if capture_interval_sec is not None:
                    next_capture_time += capture_interval_sec

        process.terminate()
        return frames

    def _base64_frames(self, frames):
        base64_frames = []
        for f in frames:
            buffered = BytesIO()
            f["image"].save(buffered, format="JPEG")
            encoded = base64.b64encode(buffered.getvalue()).decode("utf-8")
            base64_frames.append(encoded)
        return base64_frames

    def _select_audio_format(self, formats):
        audio_formats = [
            f
            for f in formats
            if f.get("vcodec") == "none"
               and f.get("acodec")
               and f.get("acodec") != "none"
        ]

        if not audio_formats:
            raise ValueError("No valid audio-only formats found.")

        # Prefer m4a > webm, highest abr first
        preferred_exts = ["m4a", "webm"]

        def sort_key(f):
            ext_score = (
                preferred_exts.index(f["ext"]) if f["ext"] in preferred_exts else 99
            )
            abr = f.get("abr") or 0
            return (ext_score, -abr)

        audio_formats.sort(key=sort_key)
        return audio_formats[0]["url"]

    def _capture_audio(self, audio_url) -> BytesIO:
        audio_buffer = BytesIO()
        ffmpeg_audio_cmd = [
            "ffmpeg",
            "-i",
            audio_url,
            "-f",
            "wav",
            "-acodec",
            "pcm_s16le",  # Whisper prefers PCM
            "-ac",
            "1",  # Mono
            "-ar",
            "16000",  # 16kHz for Whisper
            "-",
        ]

        result = subprocess.run(
            ffmpeg_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE
        )
        if result.returncode != 0:
            raise RuntimeError("ffmpeg failed:\n" + result.stderr.decode())

        audio_buffer = BytesIO(result.stdout)
        audio_buffer.seek(0)
        return audio_buffer