|
import os
|
|
from dotenv import load_dotenv
|
|
from langgraph.graph import START, StateGraph, MessagesState
|
|
from langgraph.prebuilt import tools_condition
|
|
from langgraph.prebuilt import ToolNode
|
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
|
from langchain_community.tools import DuckDuckGoSearchResults
|
|
from langchain_community.document_loaders import WikipediaLoader
|
|
from langchain_community.document_loaders import ArxivLoader
|
|
from langchain_community.vectorstores import SupabaseVectorStore
|
|
from langchain_core.messages import SystemMessage, HumanMessage
|
|
from langchain_core.tools import tool
|
|
from langchain.tools.retriever import create_retriever_tool
|
|
from supabase.client import Client, create_client
|
|
|
|
load_dotenv()
|
|
|
|
@tool
|
|
def multiply(a: int, b: int) -> int:
|
|
"""Multiply two numbers.
|
|
|
|
Args:
|
|
a: first int
|
|
b: second int
|
|
"""
|
|
return a * b
|
|
|
|
@tool
|
|
def add(a: int, b: int) -> int:
|
|
"""Add two numbers.
|
|
|
|
Args:
|
|
a: first int
|
|
b: second int
|
|
"""
|
|
return a+b
|
|
|
|
@tool
|
|
def subtract(a: int, b:int) -> int:
|
|
"""Subtract two numbers.
|
|
|
|
Args:
|
|
a: first int
|
|
b: second int
|
|
"""
|
|
return a-b
|
|
|
|
@tool
|
|
def divide(a: int, b: int) -> int:
|
|
"""Divide two numbers.
|
|
|
|
Args:
|
|
a: first int
|
|
b: second int
|
|
"""
|
|
if b == 0:
|
|
raise ValueError("Cannot divide by zero.")
|
|
return a / b
|
|
|
|
@tool
|
|
def modulus(a: int, b:int) -> int:
|
|
"""Get the modulus of two numbers.
|
|
|
|
Args:
|
|
a: first int
|
|
b: second int
|
|
"""
|
|
return a%b
|
|
|
|
@tool
|
|
def wiki_search(query: str) -> str:
|
|
"""Search Wikipedia for a query and return maximum 2 results.
|
|
|
|
Args:
|
|
query: The search query.
|
|
"""
|
|
search_docs = WikipediaLoader(query=query, load_max_docs=3).load()
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
|
for doc in search_docs
|
|
])
|
|
return {"wiki_results": formatted_search_docs}
|
|
|
|
|
|
@tool
|
|
def web_search(query: str) -> str:
|
|
"""Search Duck2DuckGo for a query and return maximum 3 results.
|
|
|
|
Args:
|
|
query: The search query."""
|
|
search_docs = DuckDuckGoSearchResults(max_results=4).invoke(query=query)
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
|
for doc in search_docs
|
|
])
|
|
return {"web_results": formatted_search_docs}
|
|
|
|
@tool
|
|
def arvix_search(query: str) -> str:
|
|
"""Search Arxiv for a query and return maximum 3 result.
|
|
|
|
Args:
|
|
query: The search query."""
|
|
search_docs = ArxivLoader(query=query, load_max_docs=2).load()
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
|
for doc in search_docs
|
|
])
|
|
return {"arvix_results": formatted_search_docs}
|
|
|
|
|
|
with open("system_prompt.txt","r",encoding="utf-8") as f:
|
|
system_prompt = f.read()
|
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt)
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
|
supabase: Client = create_client(
|
|
os.environ.get("SUPABASE_URL"),
|
|
os.environ.get("SUPABASE_SERVICE_KEY"))
|
|
vector_store = SupabaseVectorStore(
|
|
client=supabase,
|
|
embedding= embeddings,
|
|
table_name="documents",
|
|
query_name="match_documents_langchain",
|
|
)
|
|
create_retriever_tool = create_retriever_tool(
|
|
retriever=vector_store.as_retriever(),
|
|
name="Question Search",
|
|
description="A tool to retrieve similar questions from a vector store.",
|
|
)
|
|
|
|
tools = [
|
|
multiply,
|
|
add,
|
|
subtract,
|
|
divide,
|
|
modulus,
|
|
wiki_search,
|
|
web_search,
|
|
arvix_search,
|
|
]
|
|
|
|
def build_graph():
|
|
|
|
llm = ChatHuggingFace(
|
|
llm=HuggingFaceEndpoint(
|
|
repo_id="meta-llama/Llama-2-7b-chat-hf",
|
|
temperature=0,
|
|
)
|
|
)
|
|
llm_with_tools = llm.bind_tools(tools)
|
|
|
|
def assistant(state: MessagesState):
|
|
"""Assistant node"""
|
|
return{"messages":[llm_with_tools.invoke(state["messages"])]}
|
|
|
|
def retriever(state: MessagesState):
|
|
"""Retriever node"""
|
|
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
|
example_msg = HumanMessage(
|
|
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
|
)
|
|
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
|
|
|
builder = StateGraph(MessagesState)
|
|
builder.add_node("retriever", retriever)
|
|
builder.add_node("assistant", assistant)
|
|
builder.add_node("tools", ToolNode(tools))
|
|
|
|
builder.add_edge(START,"retriever")
|
|
builder.add_edge("retriever","assistant")
|
|
builder.add_edge("retriever","assistant")
|
|
builder.add_conditional_edges(
|
|
"assistant",
|
|
tools_condition,
|
|
)
|
|
builder.add_edge("tools","assistant")
|
|
|
|
return builder.compile()
|
|
|
|
if __name__ == "__main__":
|
|
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
|
|
|
|
|
graph = build_graph()
|
|
messages = [HumanMessage(content=question)]
|
|
messages = graph.invoke({"messages":messages})
|
|
for m in messages["messages"]:
|
|
m.preetty_print() |