|
|
|
import os |
|
import requests |
|
import pandas as pd |
|
import gradio as gr |
|
from typing import Union |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("β
BasicAgent initialized.") |
|
|
|
def __call__(self, question: str) -> str: |
|
|
|
print(f"π€ Agent received question: {question[:50]}...") |
|
|
|
|
|
fixed_answer = "This is a default answer." |
|
|
|
print(f"π€ Agent returns: {fixed_answer}") |
|
return fixed_answer |
|
|
|
|
|
|
|
def run_and_submit_all(profile: Union[gr.OAuthProfile, None]): |
|
""" |
|
Core function that: |
|
- Initializes the agent |
|
- Fetches questions |
|
- Generates answers |
|
- Submits them to the scoring API |
|
- Returns the final result and answers DataFrame |
|
""" |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = profile.username |
|
print(f"π€ Logged in user: {username}") |
|
else: |
|
print("β οΈ User not logged in.") |
|
return "Please login using Hugging Face Login button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Not available" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
return f"β Error initializing agent: {e}", None |
|
|
|
|
|
print(f"π₯ Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
return "β Fetched questions list is empty or invalid.", None |
|
print(f"β
{len(questions_data)} questions fetched.") |
|
except Exception as e: |
|
return f"β Error fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
|
|
print("π§ Running agent on questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": submitted_answer |
|
}) |
|
except Exception as e: |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": f"AGENT ERROR: {e}" |
|
}) |
|
|
|
if not answers_payload: |
|
return "β Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = { |
|
"username": username, |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
print(f"π Submitting {len(answers_payload)} answers...") |
|
|
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
|
|
final_status = ( |
|
f"β
Submission Successful!\n" |
|
f"π€ User: {result_data.get('username')}\n" |
|
f"π Score: {result_data.get('score')}% " |
|
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')} correct)\n" |
|
f"π Message: {result_data.get('message', 'No message.')}" |
|
) |
|
return final_status, pd.DataFrame(results_log) |
|
|
|
except requests.exceptions.HTTPError as e: |
|
return f"β Submission Failed (HTTP error): {e}", pd.DataFrame(results_log) |
|
except requests.exceptions.Timeout: |
|
return "β Submission Failed: Request timed out.", pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"β Submission Failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# π€ Basic Agent Evaluation Tool") |
|
gr.Markdown(""" |
|
### π Instructions: |
|
1. Clone this Hugging Face Space. |
|
2. Implement your own logic in the `BasicAgent` class. |
|
3. Login with your Hugging Face account. |
|
4. Press the button to run all questions through your agent and submit. |
|
|
|
**Note:** It may take some time depending on the number of questions and agent logic. |
|
""") |
|
|
|
|
|
gr.LoginButton() |
|
run_button = gr.Button("βΆοΈ Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="π Submission Status", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="π Agent Answers Log", wrap=True) |
|
|
|
|
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) |
|
|
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-" * 30 + " π App Starting " + "-" * 30) |
|
space_host = os.getenv("SPACE_HOST") |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if space_host: |
|
print(f"β
SPACE_HOST: {space_host}") |
|
print(f"π App URL: https://{space_host}.hf.space") |
|
else: |
|
print("βΉοΈ SPACE_HOST not found (running locally?)") |
|
|
|
if space_id: |
|
print(f"β
SPACE_ID: {space_id}") |
|
print(f"π¦ Repo: https://huggingface.co/spaces/{space_id}") |
|
else: |
|
print("βΉοΈ SPACE_ID not set") |
|
|
|
print("-" * 60) |
|
print("π§ Launching Gradio app...") |
|
demo.launch(debug=True, share=False) |
|
|