Upload 13 files
Browse files- .github/workflows/sync_to_huggingface_space.yml +19 -0
- .gitignore +177 -0
- LICENSE +21 -0
- README.md +104 -15
- agent.py +801 -0
- app.py +211 -196
- code_interpreter.py +281 -0
- explore_metadata.ipynb +332 -0
- image_processing.py +26 -0
- metadata.jsonl +0 -0
- requirements.txt +20 -2
- supabase_docs.csv +0 -0
- system_prompt.txt +5 -0
.github/workflows/sync_to_huggingface_space.yml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to Hugging Face hub
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches: [main]
|
6 |
+
workflow_dispatch:
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
sync-to-hub:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
steps:
|
12 |
+
- uses: actions/checkout@v3
|
13 |
+
with:
|
14 |
+
fetch-depth: 0
|
15 |
+
lfs: true
|
16 |
+
- name: Push to hub
|
17 |
+
env:
|
18 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
19 |
+
run: git push -f https://fisherman611:[email protected]/spaces/fisherman611/gaia-agent main
|
.gitignore
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
ENV/
|
136 |
+
env.bak/
|
137 |
+
venv.bak/
|
138 |
+
|
139 |
+
# Spyder project settings
|
140 |
+
.spyderproject
|
141 |
+
.spyproject
|
142 |
+
|
143 |
+
# Rope project settings
|
144 |
+
.ropeproject
|
145 |
+
|
146 |
+
# mkdocs documentation
|
147 |
+
/site
|
148 |
+
|
149 |
+
# mypy
|
150 |
+
.mypy_cache/
|
151 |
+
.dmypy.json
|
152 |
+
dmypy.json
|
153 |
+
|
154 |
+
# Pyre type checker
|
155 |
+
.pyre/
|
156 |
+
|
157 |
+
# pytype static type analyzer
|
158 |
+
.pytype/
|
159 |
+
|
160 |
+
# Cython debug symbols
|
161 |
+
cython_debug/
|
162 |
+
|
163 |
+
# PyCharm
|
164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
168 |
+
#.idea/
|
169 |
+
|
170 |
+
# Ruff stuff:
|
171 |
+
.ruff_cache/
|
172 |
+
|
173 |
+
# PyPI configuration file
|
174 |
+
.pypirc
|
175 |
+
|
176 |
+
###
|
177 |
+
/image_outputs
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2025 Luong Huu Thanh
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,15 +1,104 @@
|
|
1 |
-
---
|
2 |
-
title: Template Final Assignment
|
3 |
-
emoji: π΅π»ββοΈ
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: indigo
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.25.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
hf_oauth: true
|
11 |
-
# optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
|
12 |
-
hf_oauth_expiration_minutes: 480
|
13 |
-
---
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Template Final Assignment
|
3 |
+
emoji: π΅π»ββοΈ
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.25.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
hf_oauth: true
|
11 |
+
# optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
|
12 |
+
hf_oauth_expiration_minutes: 480
|
13 |
+
---
|
14 |
+
|
15 |
+
# **GAIA Agent**
|
16 |
+
|
17 |
+
## **Introduction**
|
18 |
+
|
19 |
+
**GAIA Agent** is an automated system built to tackle and submit solutions for the GAIA benchmark, which tests the capabilities of general-purpose AI agents on diverse and challenging tasks. These tasks require a combination of reasoning, code execution, information retrieval, data interpretation, and multimodal understanding. Powered by advanced language models (such as HuggingFace, and Groq), the agent incorporates a versatile set of tools including browser tools, code interpreter tools, mathematical tools, document processing tools, image processing and generation tools. It is designed for seamless interaction with the benchmark, offering automatic evaluation, submission, and result display through a user-friendly Gradio interface.
|
20 |
+
|
21 |
+
## **Tools Implementation**
|
22 |
+
|
23 |
+
### **Browser tools**
|
24 |
+
- **Wikipedia Search:** Search Wikipedia for a query and return maximum 2 results.
|
25 |
+
- **Web Search:** Search the web for a query and return maximum 2 results.
|
26 |
+
- **Arxiv Search:** Search arXiv for a query and return maximum 2 results.
|
27 |
+
|
28 |
+
### **Code interpreter tools**
|
29 |
+
- **Execute Multi-programming Language:** Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
|
30 |
+
|
31 |
+
### **Mathematical tools**
|
32 |
+
- **Multiplication Tools:** Multiplies 2 numbers
|
33 |
+
- **Addition:** Adds 2 numbers
|
34 |
+
- **Subtraction:** Subtracts 2 numbers
|
35 |
+
- **Division:** Divides 2 numbers
|
36 |
+
- **Modulus:** Get the modulus of 2 numbers
|
37 |
+
- **Power:** Get the power of 2 numbers
|
38 |
+
- **Square root:** Get the square root of a number
|
39 |
+
|
40 |
+
### **Document processing tools**
|
41 |
+
- **Save and Read File:** Save content to a file and return the path
|
42 |
+
- **Download a File from URL:** Download a file from a URL and save it to a temporary location
|
43 |
+
- **Extract Text from Image:** Extract text from an image using OCR library pytesseract (if available)
|
44 |
+
- **Analyze CSV File:** Analyze a CSV file using pandas and answer a question about it
|
45 |
+
- **Analyze Excel File:** Analyze an Excel file using pandas and answer a question about it
|
46 |
+
|
47 |
+
### **Image processing and generation tools**
|
48 |
+
- **Analyze Image:** Analyze basic properties of an image (size, mode, color analysis, thumbnail preview)
|
49 |
+
- **Transform Image:** Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale
|
50 |
+
- **Draw on Image:** Draw shapes (rectangle, circle, line) or text onto an image
|
51 |
+
- **Generate Simple Image:** Generate a simple image (gradient, noise, pattern, chart)
|
52 |
+
- **Combine Images:** Combine multiple images (collage, stack, blend)
|
53 |
+
|
54 |
+
|
55 |
+
## **Installation**
|
56 |
+
Clone the repository, change the current working directory to this repository's root folder:
|
57 |
+
|
58 |
+
```
|
59 |
+
git clone https://github.com/fisherman611/gaia-agent.git
|
60 |
+
```
|
61 |
+
```
|
62 |
+
cd gaia-agent
|
63 |
+
```
|
64 |
+
|
65 |
+
Install ```requirements.txt``` (replace `3.11` with your installed Python version):
|
66 |
+
|
67 |
+
```
|
68 |
+
py -3.11 -m pip install -r requirements.txt
|
69 |
+
```
|
70 |
+
|
71 |
+
## **Environment Variables**
|
72 |
+
Store some API keys an variables in the `.env` file and load it in your code using `load_dotenv`
|
73 |
+
|
74 |
+
```
|
75 |
+
SUPABASE_URL=...
|
76 |
+
SUPABASE_SERVICE_ROLE_KEY=...
|
77 |
+
SUPABASE_SERVICE_KEY=...
|
78 |
+
HUGGINGFACEHUB_API_TOKEN=...
|
79 |
+
GROQ_API_KEY=...
|
80 |
+
TAVILY_API_KEY=...
|
81 |
+
LANGSMITH_API_KEY=...
|
82 |
+
|
83 |
+
LANGSMITH_TRACING=true
|
84 |
+
LANGSMITH_PROJECT=ai_agent_course
|
85 |
+
LANGSMITH_ENDPOINT=https://api.smith.langchain.com
|
86 |
+
```
|
87 |
+
|
88 |
+
## **Demo**
|
89 |
+
To run the application using the command line, use the following command (replace `3.11` with your installed Python version):
|
90 |
+
```
|
91 |
+
py -3.11 app.py
|
92 |
+
```
|
93 |
+
Or run in the [Hugging Face Space](https://huggingface.co/spaces/fisherman611/gaia-agent)
|
94 |
+
## **Resources**
|
95 |
+
- [GAIA Benchmark](https://huggingface.co/spaces/gaia-benchmark/leaderboard)
|
96 |
+
- [Hugging Face Agents Course](https://huggingface.co/agents-course)
|
97 |
+
- [Langgraph Agents](https://langchain-ai.github.io/langgraph/)
|
98 |
+
|
99 |
+
|
100 |
+
## **Contributing**
|
101 |
+
Contributions are welcome! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request.
|
102 |
+
|
103 |
+
## **License**
|
104 |
+
This project is licensed under the [MIT License](https://mit-license.org/).
|
agent.py
ADDED
@@ -0,0 +1,801 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from typing import List, Dict, Any, Optional
|
4 |
+
import tempfile
|
5 |
+
import re
|
6 |
+
import json
|
7 |
+
import requests
|
8 |
+
from urllib.parse import urlparse
|
9 |
+
import pytesseract
|
10 |
+
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
|
11 |
+
import cmath
|
12 |
+
import pandas as pd
|
13 |
+
import uuid
|
14 |
+
import numpy as np
|
15 |
+
from code_interpreter import CodeInterpreter
|
16 |
+
|
17 |
+
interpreter_instance = CodeInterpreter()
|
18 |
+
|
19 |
+
from image_processing import *
|
20 |
+
|
21 |
+
"""Langraph"""
|
22 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
23 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
24 |
+
from langchain_community.document_loaders import WikipediaLoader
|
25 |
+
from langchain_community.document_loaders import ArxivLoader
|
26 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
27 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
28 |
+
from langchain_groq import ChatGroq
|
29 |
+
from langchain_huggingface import (
|
30 |
+
ChatHuggingFace,
|
31 |
+
HuggingFaceEndpoint,
|
32 |
+
HuggingFaceEmbeddings,
|
33 |
+
)
|
34 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
35 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
36 |
+
from langchain_core.tools import tool
|
37 |
+
from langchain.tools.retriever import create_retriever_tool
|
38 |
+
from supabase.client import Client, create_client
|
39 |
+
|
40 |
+
load_dotenv()
|
41 |
+
|
42 |
+
### =============== BROWSER TOOLS =============== ###
|
43 |
+
|
44 |
+
|
45 |
+
@tool
|
46 |
+
def wiki_search(query: str) -> str:
|
47 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
query: The search query."""
|
51 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
52 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
53 |
+
[
|
54 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
55 |
+
for doc in search_docs
|
56 |
+
]
|
57 |
+
)
|
58 |
+
return {"wiki_results": formatted_search_docs}
|
59 |
+
|
60 |
+
|
61 |
+
@tool
|
62 |
+
def web_search(query: str) -> str:
|
63 |
+
"""Search Tavily for a query and return maximum 3 results.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
query: The search query."""
|
67 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
68 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
69 |
+
[
|
70 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
71 |
+
for doc in search_docs
|
72 |
+
]
|
73 |
+
)
|
74 |
+
return {"web_results": formatted_search_docs}
|
75 |
+
|
76 |
+
|
77 |
+
@tool
|
78 |
+
def arxiv_search(query: str) -> str:
|
79 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
query: The search query."""
|
83 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
84 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
85 |
+
[
|
86 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
87 |
+
for doc in search_docs
|
88 |
+
]
|
89 |
+
)
|
90 |
+
return {"arxiv_results": formatted_search_docs}
|
91 |
+
|
92 |
+
|
93 |
+
### =============== CODE INTERPRETER TOOLS =============== ###
|
94 |
+
|
95 |
+
|
96 |
+
@tool
|
97 |
+
def execute_code_multilang(code: str, language: str = "python") -> str:
|
98 |
+
"""Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
code (str): The source code to execute.
|
102 |
+
language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
|
106 |
+
"""
|
107 |
+
supported_languages = ["python", "bash", "sql", "c", "java"]
|
108 |
+
language = language.lower()
|
109 |
+
|
110 |
+
if language not in supported_languages:
|
111 |
+
return f"β Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"
|
112 |
+
|
113 |
+
result = interpreter_instance.execute_code(code, language=language)
|
114 |
+
|
115 |
+
response = []
|
116 |
+
|
117 |
+
if result["status"] == "success":
|
118 |
+
response.append(f"β
Code executed successfully in **{language.upper()}**")
|
119 |
+
|
120 |
+
if result.get("stdout"):
|
121 |
+
response.append(
|
122 |
+
"\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
|
123 |
+
)
|
124 |
+
|
125 |
+
if result.get("stderr"):
|
126 |
+
response.append(
|
127 |
+
"\n**Standard Error (if any):**\n```\n"
|
128 |
+
+ result["stderr"].strip()
|
129 |
+
+ "\n```"
|
130 |
+
)
|
131 |
+
|
132 |
+
if result.get("result") is not None:
|
133 |
+
response.append(
|
134 |
+
"\n**Execution Result:**\n```\n"
|
135 |
+
+ str(result["result"]).strip()
|
136 |
+
+ "\n```"
|
137 |
+
)
|
138 |
+
|
139 |
+
if result.get("dataframes"):
|
140 |
+
for df_info in result["dataframes"]:
|
141 |
+
response.append(
|
142 |
+
f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
|
143 |
+
)
|
144 |
+
df_preview = pd.DataFrame(df_info["head"])
|
145 |
+
response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")
|
146 |
+
|
147 |
+
if result.get("plots"):
|
148 |
+
response.append(
|
149 |
+
f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
|
150 |
+
)
|
151 |
+
|
152 |
+
else:
|
153 |
+
response.append(f"β Code execution failed in **{language.upper()}**")
|
154 |
+
if result.get("stderr"):
|
155 |
+
response.append(
|
156 |
+
"\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
|
157 |
+
)
|
158 |
+
|
159 |
+
return "\n".join(response)
|
160 |
+
|
161 |
+
|
162 |
+
### =============== MATHEMATICAL TOOLS =============== ###
|
163 |
+
|
164 |
+
|
165 |
+
@tool
|
166 |
+
def multiply(a: float, b: float) -> float:
|
167 |
+
"""
|
168 |
+
Multiplies two numbers.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
a (float): the first number
|
172 |
+
b (float): the second number
|
173 |
+
"""
|
174 |
+
return a * b
|
175 |
+
|
176 |
+
|
177 |
+
@tool
|
178 |
+
def add(a: float, b: float) -> float:
|
179 |
+
"""
|
180 |
+
Adds two numbers.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
a (float): the first number
|
184 |
+
b (float): the second number
|
185 |
+
"""
|
186 |
+
return a + b
|
187 |
+
|
188 |
+
|
189 |
+
@tool
|
190 |
+
def subtract(a: float, b: float) -> int:
|
191 |
+
"""
|
192 |
+
Subtracts two numbers.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
a (float): the first number
|
196 |
+
b (float): the second number
|
197 |
+
"""
|
198 |
+
return a - b
|
199 |
+
|
200 |
+
|
201 |
+
@tool
|
202 |
+
def divide(a: float, b: float) -> float:
|
203 |
+
"""
|
204 |
+
Divides two numbers.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
a (float): the first float number
|
208 |
+
b (float): the second float number
|
209 |
+
"""
|
210 |
+
if b == 0:
|
211 |
+
raise ValueError("Cannot divided by zero.")
|
212 |
+
return a / b
|
213 |
+
|
214 |
+
|
215 |
+
@tool
|
216 |
+
def modulus(a: int, b: int) -> int:
|
217 |
+
"""
|
218 |
+
Get the modulus of two numbers.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
a (int): the first number
|
222 |
+
b (int): the second number
|
223 |
+
"""
|
224 |
+
return a % b
|
225 |
+
|
226 |
+
|
227 |
+
@tool
|
228 |
+
def power(a: float, b: float) -> float:
|
229 |
+
"""
|
230 |
+
Get the power of two numbers.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
a (float): the first number
|
234 |
+
b (float): the second number
|
235 |
+
"""
|
236 |
+
return a**b
|
237 |
+
|
238 |
+
|
239 |
+
@tool
|
240 |
+
def square_root(a: float) -> float | complex:
|
241 |
+
"""
|
242 |
+
Get the square root of a number.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
a (float): the number to get the square root of
|
246 |
+
"""
|
247 |
+
if a >= 0:
|
248 |
+
return a**0.5
|
249 |
+
return cmath.sqrt(a)
|
250 |
+
|
251 |
+
|
252 |
+
### =============== DOCUMENT PROCESSING TOOLS =============== ###
|
253 |
+
|
254 |
+
|
255 |
+
@tool
|
256 |
+
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
|
257 |
+
"""
|
258 |
+
Save content to a file and return the path.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
content (str): the content to save to the file
|
262 |
+
filename (str, optional): the name of the file. If not provided, a random name file will be created.
|
263 |
+
"""
|
264 |
+
temp_dir = tempfile.gettempdir()
|
265 |
+
if filename is None:
|
266 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
|
267 |
+
filepath = temp_file.name
|
268 |
+
else:
|
269 |
+
filepath = os.path.join(temp_dir, filename)
|
270 |
+
|
271 |
+
with open(filepath, "w") as f:
|
272 |
+
f.write(content)
|
273 |
+
|
274 |
+
return f"File saved to {filepath}. You can read this file to process its contents."
|
275 |
+
|
276 |
+
|
277 |
+
@tool
|
278 |
+
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
|
279 |
+
"""
|
280 |
+
Download a file from a URL and save it to a temporary location.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
url (str): the URL of the file to download.
|
284 |
+
filename (str, optional): the name of the file. If not provided, a random name file will be created.
|
285 |
+
"""
|
286 |
+
try:
|
287 |
+
# Parse URL to get filename if not provided
|
288 |
+
if not filename:
|
289 |
+
path = urlparse(url).path
|
290 |
+
filename = os.path.basename(path)
|
291 |
+
if not filename:
|
292 |
+
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
293 |
+
|
294 |
+
# Create temporary file
|
295 |
+
temp_dir = tempfile.gettempdir()
|
296 |
+
filepath = os.path.join(temp_dir, filename)
|
297 |
+
|
298 |
+
# Download the file
|
299 |
+
response = requests.get(url, stream=True)
|
300 |
+
response.raise_for_status()
|
301 |
+
|
302 |
+
# Save the file
|
303 |
+
with open(filepath, "wb") as f:
|
304 |
+
for chunk in response.iter_content(chunk_size=8192):
|
305 |
+
f.write(chunk)
|
306 |
+
|
307 |
+
return f"File downloaded to {filepath}. You can read this file to process its contents."
|
308 |
+
except Exception as e:
|
309 |
+
return f"Error downloading file: {str(e)}"
|
310 |
+
|
311 |
+
|
312 |
+
@tool
|
313 |
+
def extract_text_from_image(image_path: str) -> str:
|
314 |
+
"""
|
315 |
+
Extract text from an image using OCR library pytesseract (if available).
|
316 |
+
|
317 |
+
Args:
|
318 |
+
image_path (str): the path to the image file.
|
319 |
+
"""
|
320 |
+
try:
|
321 |
+
# Open the image
|
322 |
+
image = Image.open(image_path)
|
323 |
+
|
324 |
+
# Extract text from the image
|
325 |
+
text = pytesseract.image_to_string(image)
|
326 |
+
|
327 |
+
return f"Extracted text from image:\n\n{text}"
|
328 |
+
except Exception as e:
|
329 |
+
return f"Error extracting text from image: {str(e)}"
|
330 |
+
|
331 |
+
|
332 |
+
@tool
|
333 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
334 |
+
"""
|
335 |
+
Analyze a CSV file using pandas and answer a question about it.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
file_path (str): the path to the CSV file.
|
339 |
+
query (str): Question about the data
|
340 |
+
"""
|
341 |
+
try:
|
342 |
+
# Read the CSV file
|
343 |
+
df = pd.read_csv(file_path)
|
344 |
+
|
345 |
+
# Run various analyses based on the query
|
346 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
347 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
348 |
+
|
349 |
+
# Add summary statistics
|
350 |
+
result += "Summary statistics:\n"
|
351 |
+
result += str(df.describe())
|
352 |
+
|
353 |
+
return result
|
354 |
+
|
355 |
+
except Exception as e:
|
356 |
+
return f"Error analyzing CSV file: {str(e)}"
|
357 |
+
|
358 |
+
|
359 |
+
@tool
|
360 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
361 |
+
"""
|
362 |
+
Analyze an Excel file using pandas and answer a question about it.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
file_path (str): the path to the Excel file.
|
366 |
+
query (str): Question about the data
|
367 |
+
"""
|
368 |
+
try:
|
369 |
+
# Read the Excel file
|
370 |
+
df = pd.read_excel(file_path)
|
371 |
+
|
372 |
+
# Run various analyses based on the query
|
373 |
+
result = (
|
374 |
+
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
375 |
+
)
|
376 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
377 |
+
|
378 |
+
# Add summary statistics
|
379 |
+
result += "Summary statistics:\n"
|
380 |
+
result += str(df.describe())
|
381 |
+
|
382 |
+
return result
|
383 |
+
|
384 |
+
except Exception as e:
|
385 |
+
return f"Error analyzing Excel file: {str(e)}"
|
386 |
+
|
387 |
+
|
388 |
+
### ============== IMAGE PROCESSING AND GENERATION TOOLS =============== ###
|
389 |
+
|
390 |
+
|
391 |
+
@tool
|
392 |
+
def analyze_image(image_base64: str) -> Dict[str, Any]:
|
393 |
+
"""
|
394 |
+
Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
|
395 |
+
|
396 |
+
Args:
|
397 |
+
image_base64 (str): Base64 encoded image string
|
398 |
+
|
399 |
+
Returns:
|
400 |
+
Dictionary with analysis result
|
401 |
+
"""
|
402 |
+
try:
|
403 |
+
img = decode_image(image_base64)
|
404 |
+
width, height = img.size
|
405 |
+
mode = img.mode
|
406 |
+
|
407 |
+
if mode in ("RGB", "RGBA"):
|
408 |
+
arr = np.array(img)
|
409 |
+
avg_colors = arr.mean(axis=(0, 1))
|
410 |
+
dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
|
411 |
+
brightness = avg_colors.mean()
|
412 |
+
color_analysis = {
|
413 |
+
"average_rgb": avg_colors.tolist(),
|
414 |
+
"brightness": brightness,
|
415 |
+
"dominant_color": dominant,
|
416 |
+
}
|
417 |
+
else:
|
418 |
+
color_analysis = {"note": f"No color analysis for mode {mode}"}
|
419 |
+
|
420 |
+
thumbnail = img.copy()
|
421 |
+
thumbnail.thumbnail((100, 100))
|
422 |
+
thumb_path = save_image(thumbnail, "thumbnails")
|
423 |
+
thumbnail_base64 = encode_image(thumb_path)
|
424 |
+
|
425 |
+
return {
|
426 |
+
"dimensions": (width, height),
|
427 |
+
"mode": mode,
|
428 |
+
"color_analysis": color_analysis,
|
429 |
+
"thumbnail": thumbnail_base64,
|
430 |
+
}
|
431 |
+
except Exception as e:
|
432 |
+
return {"error": str(e)}
|
433 |
+
|
434 |
+
|
435 |
+
@tool
|
436 |
+
def transform_image(
|
437 |
+
image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
|
438 |
+
) -> Dict[str, Any]:
|
439 |
+
"""
|
440 |
+
Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
|
441 |
+
|
442 |
+
Args:
|
443 |
+
image_base64 (str): Base64 encoded input image
|
444 |
+
operation (str): Transformation operation
|
445 |
+
params (Dict[str, Any], optional): Parameters for the operation
|
446 |
+
|
447 |
+
Returns:
|
448 |
+
Dictionary with transformed image (base64)
|
449 |
+
"""
|
450 |
+
try:
|
451 |
+
img = decode_image(image_base64)
|
452 |
+
params = params or {}
|
453 |
+
|
454 |
+
if operation == "resize":
|
455 |
+
img = img.resize(
|
456 |
+
(
|
457 |
+
params.get("width", img.width // 2),
|
458 |
+
params.get("height", img.height // 2),
|
459 |
+
)
|
460 |
+
)
|
461 |
+
elif operation == "rotate":
|
462 |
+
img = img.rotate(params.get("angle", 90), expand=True)
|
463 |
+
elif operation == "crop":
|
464 |
+
img = img.crop(
|
465 |
+
(
|
466 |
+
params.get("left", 0),
|
467 |
+
params.get("top", 0),
|
468 |
+
params.get("right", img.width),
|
469 |
+
params.get("bottom", img.height),
|
470 |
+
)
|
471 |
+
)
|
472 |
+
elif operation == "flip":
|
473 |
+
if params.get("direction", "horizontal") == "horizontal":
|
474 |
+
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
475 |
+
else:
|
476 |
+
img = img.transpose(Image.FLIP_TOP_BOTTOM)
|
477 |
+
elif operation == "adjust_brightness":
|
478 |
+
img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
|
479 |
+
elif operation == "adjust_contrast":
|
480 |
+
img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
|
481 |
+
elif operation == "blur":
|
482 |
+
img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
|
483 |
+
elif operation == "sharpen":
|
484 |
+
img = img.filter(ImageFilter.SHARPEN)
|
485 |
+
elif operation == "grayscale":
|
486 |
+
img = img.convert("L")
|
487 |
+
else:
|
488 |
+
return {"error": f"Unknown operation: {operation}"}
|
489 |
+
|
490 |
+
result_path = save_image(img)
|
491 |
+
result_base64 = encode_image(result_path)
|
492 |
+
return {"transformed_image": result_base64}
|
493 |
+
|
494 |
+
except Exception as e:
|
495 |
+
return {"error": str(e)}
|
496 |
+
|
497 |
+
|
498 |
+
@tool
|
499 |
+
def draw_on_image(
|
500 |
+
image_base64: str, drawing_type: str, params: Dict[str, Any]
|
501 |
+
) -> Dict[str, Any]:
|
502 |
+
"""
|
503 |
+
Draw shapes (rectangle, circle, line) or text onto an image.
|
504 |
+
|
505 |
+
Args:
|
506 |
+
image_base64 (str): Base64 encoded input image
|
507 |
+
drawing_type (str): Drawing type
|
508 |
+
params (Dict[str, Any]): Drawing parameters
|
509 |
+
|
510 |
+
Returns:
|
511 |
+
Dictionary with result image (base64)
|
512 |
+
"""
|
513 |
+
try:
|
514 |
+
img = decode_image(image_base64)
|
515 |
+
draw = ImageDraw.Draw(img)
|
516 |
+
color = params.get("color", "red")
|
517 |
+
|
518 |
+
if drawing_type == "rectangle":
|
519 |
+
draw.rectangle(
|
520 |
+
[params["left"], params["top"], params["right"], params["bottom"]],
|
521 |
+
outline=color,
|
522 |
+
width=params.get("width", 2),
|
523 |
+
)
|
524 |
+
elif drawing_type == "circle":
|
525 |
+
x, y, r = params["x"], params["y"], params["radius"]
|
526 |
+
draw.ellipse(
|
527 |
+
(x - r, y - r, x + r, y + r),
|
528 |
+
outline=color,
|
529 |
+
width=params.get("width", 2),
|
530 |
+
)
|
531 |
+
elif drawing_type == "line":
|
532 |
+
draw.line(
|
533 |
+
(
|
534 |
+
params["start_x"],
|
535 |
+
params["start_y"],
|
536 |
+
params["end_x"],
|
537 |
+
params["end_y"],
|
538 |
+
),
|
539 |
+
fill=color,
|
540 |
+
width=params.get("width", 2),
|
541 |
+
)
|
542 |
+
elif drawing_type == "text":
|
543 |
+
font_size = params.get("font_size", 20)
|
544 |
+
try:
|
545 |
+
font = ImageFont.truetype("arial.ttf", font_size)
|
546 |
+
except IOError:
|
547 |
+
font = ImageFont.load_default()
|
548 |
+
draw.text(
|
549 |
+
(params["x"], params["y"]),
|
550 |
+
params.get("text", "Text"),
|
551 |
+
fill=color,
|
552 |
+
font=font,
|
553 |
+
)
|
554 |
+
else:
|
555 |
+
return {"error": f"Unknown drawing type: {drawing_type}"}
|
556 |
+
|
557 |
+
result_path = save_image(img)
|
558 |
+
result_base64 = encode_image(result_path)
|
559 |
+
return {"result_image": result_base64}
|
560 |
+
|
561 |
+
except Exception as e:
|
562 |
+
return {"error": str(e)}
|
563 |
+
|
564 |
+
|
565 |
+
@tool
|
566 |
+
def generate_simple_image(
|
567 |
+
image_type: str,
|
568 |
+
width: int = 500,
|
569 |
+
height: int = 500,
|
570 |
+
params: Optional[Dict[str, Any]] = None,
|
571 |
+
) -> Dict[str, Any]:
|
572 |
+
"""
|
573 |
+
Generate a simple image (gradient, noise, pattern, chart).
|
574 |
+
|
575 |
+
Args:
|
576 |
+
image_type (str): Type of image
|
577 |
+
width (int), height (int)
|
578 |
+
params (Dict[str, Any], optional): Specific parameters
|
579 |
+
|
580 |
+
Returns:
|
581 |
+
Dictionary with generated image (base64)
|
582 |
+
"""
|
583 |
+
try:
|
584 |
+
params = params or {}
|
585 |
+
|
586 |
+
if image_type == "gradient":
|
587 |
+
direction = params.get("direction", "horizontal")
|
588 |
+
start_color = params.get("start_color", (255, 0, 0))
|
589 |
+
end_color = params.get("end_color", (0, 0, 255))
|
590 |
+
|
591 |
+
img = Image.new("RGB", (width, height))
|
592 |
+
draw = ImageDraw.Draw(img)
|
593 |
+
|
594 |
+
if direction == "horizontal":
|
595 |
+
for x in range(width):
|
596 |
+
r = int(
|
597 |
+
start_color[0] + (end_color[0] - start_color[0]) * x / width
|
598 |
+
)
|
599 |
+
g = int(
|
600 |
+
start_color[1] + (end_color[1] - start_color[1]) * x / width
|
601 |
+
)
|
602 |
+
b = int(
|
603 |
+
start_color[2] + (end_color[2] - start_color[2]) * x / width
|
604 |
+
)
|
605 |
+
draw.line([(x, 0), (x, height)], fill=(r, g, b))
|
606 |
+
else:
|
607 |
+
for y in range(height):
|
608 |
+
r = int(
|
609 |
+
start_color[0] + (end_color[0] - start_color[0]) * y / height
|
610 |
+
)
|
611 |
+
g = int(
|
612 |
+
start_color[1] + (end_color[1] - start_color[1]) * y / height
|
613 |
+
)
|
614 |
+
b = int(
|
615 |
+
start_color[2] + (end_color[2] - start_color[2]) * y / height
|
616 |
+
)
|
617 |
+
draw.line([(0, y), (width, y)], fill=(r, g, b))
|
618 |
+
|
619 |
+
elif image_type == "noise":
|
620 |
+
noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
|
621 |
+
img = Image.fromarray(noise_array, "RGB")
|
622 |
+
|
623 |
+
else:
|
624 |
+
return {"error": f"Unsupported image_type {image_type}"}
|
625 |
+
|
626 |
+
result_path = save_image(img)
|
627 |
+
result_base64 = encode_image(result_path)
|
628 |
+
return {"generated_image": result_base64}
|
629 |
+
|
630 |
+
except Exception as e:
|
631 |
+
return {"error": str(e)}
|
632 |
+
|
633 |
+
|
634 |
+
@tool
|
635 |
+
def combine_images(
|
636 |
+
images_base64: List[str], operation: str, params: Optional[Dict[str, Any]] = None
|
637 |
+
) -> Dict[str, Any]:
|
638 |
+
"""
|
639 |
+
Combine multiple images (collage, stack, blend).
|
640 |
+
|
641 |
+
Args:
|
642 |
+
images_base64 (List[str]): List of base64 images
|
643 |
+
operation (str): Combination type
|
644 |
+
params (Dict[str, Any], optional)
|
645 |
+
|
646 |
+
Returns:
|
647 |
+
Dictionary with combined image (base64)
|
648 |
+
"""
|
649 |
+
try:
|
650 |
+
images = [decode_image(b64) for b64 in images_base64]
|
651 |
+
params = params or {}
|
652 |
+
|
653 |
+
if operation == "stack":
|
654 |
+
direction = params.get("direction", "horizontal")
|
655 |
+
if direction == "horizontal":
|
656 |
+
total_width = sum(img.width for img in images)
|
657 |
+
max_height = max(img.height for img in images)
|
658 |
+
new_img = Image.new("RGB", (total_width, max_height))
|
659 |
+
x = 0
|
660 |
+
for img in images:
|
661 |
+
new_img.paste(img, (x, 0))
|
662 |
+
x += img.width
|
663 |
+
else:
|
664 |
+
max_width = max(img.width for img in images)
|
665 |
+
total_height = sum(img.height for img in images)
|
666 |
+
new_img = Image.new("RGB", (max_width, total_height))
|
667 |
+
y = 0
|
668 |
+
for img in images:
|
669 |
+
new_img.paste(img, (0, y))
|
670 |
+
y += img.height
|
671 |
+
else:
|
672 |
+
return {"error": f"Unsupported combination operation {operation}"}
|
673 |
+
|
674 |
+
result_path = save_image(new_img)
|
675 |
+
result_base64 = encode_image(result_path)
|
676 |
+
return {"combined_image": result_base64}
|
677 |
+
|
678 |
+
except Exception as e:
|
679 |
+
return {"error": str(e)}
|
680 |
+
|
681 |
+
|
682 |
+
# load the system prompt from the file
|
683 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
684 |
+
system_prompt = f.read()
|
685 |
+
print(system_prompt)
|
686 |
+
|
687 |
+
# System message
|
688 |
+
sys_msg = SystemMessage(content=system_prompt)
|
689 |
+
|
690 |
+
# build a retriever
|
691 |
+
embeddings = HuggingFaceEmbeddings(
|
692 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
693 |
+
) # dim=768
|
694 |
+
supabase: Client = create_client(
|
695 |
+
os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_ROLE_KEY")
|
696 |
+
)
|
697 |
+
vector_store = SupabaseVectorStore(
|
698 |
+
client=supabase,
|
699 |
+
embedding=embeddings,
|
700 |
+
table_name="documents2",
|
701 |
+
query_name="match_documents_2",
|
702 |
+
)
|
703 |
+
create_retriever_tool = create_retriever_tool(
|
704 |
+
retriever=vector_store.as_retriever(),
|
705 |
+
name="Question Search",
|
706 |
+
description="A tool to retrieve similar questions from a vector store.",
|
707 |
+
)
|
708 |
+
|
709 |
+
|
710 |
+
tools = [
|
711 |
+
web_search,
|
712 |
+
wiki_search,
|
713 |
+
arxiv_search,
|
714 |
+
multiply,
|
715 |
+
add,
|
716 |
+
subtract,
|
717 |
+
divide,
|
718 |
+
modulus,
|
719 |
+
power,
|
720 |
+
square_root,
|
721 |
+
save_and_read_file,
|
722 |
+
download_file_from_url,
|
723 |
+
extract_text_from_image,
|
724 |
+
analyze_csv_file,
|
725 |
+
analyze_excel_file,
|
726 |
+
execute_code_multilang,
|
727 |
+
analyze_image,
|
728 |
+
transform_image,
|
729 |
+
draw_on_image,
|
730 |
+
generate_simple_image,
|
731 |
+
combine_images,
|
732 |
+
]
|
733 |
+
|
734 |
+
|
735 |
+
# Build graph function
|
736 |
+
def build_graph(provider: str = "groq"):
|
737 |
+
"""Build the graph"""
|
738 |
+
# Load environment variables from .env file
|
739 |
+
if provider == "groq":
|
740 |
+
# Groq https://console.groq.com/docs/models
|
741 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
742 |
+
elif provider == "huggingface":
|
743 |
+
# TODO: Add huggingface endpoint
|
744 |
+
llm = ChatHuggingFace(
|
745 |
+
llm=HuggingFaceEndpoint(
|
746 |
+
repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
747 |
+
task="text-generation", # for chatβstyle use βtext-generationβ
|
748 |
+
max_new_tokens=1024,
|
749 |
+
do_sample=False,
|
750 |
+
repetition_penalty=1.03,
|
751 |
+
temperature=0,
|
752 |
+
),
|
753 |
+
verbose=True,
|
754 |
+
)
|
755 |
+
else:
|
756 |
+
raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.")
|
757 |
+
# Bind tools to LLM
|
758 |
+
llm_with_tools = llm.bind_tools(tools)
|
759 |
+
|
760 |
+
# Node
|
761 |
+
def assistant(state: MessagesState):
|
762 |
+
"""Assistant node"""
|
763 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
764 |
+
|
765 |
+
def retriever(state: MessagesState):
|
766 |
+
"""Retriever node"""
|
767 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
768 |
+
|
769 |
+
if similar_question: # Check if the list is not empty
|
770 |
+
example_msg = HumanMessage(
|
771 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
772 |
+
)
|
773 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
774 |
+
else:
|
775 |
+
# Handle the case when no similar questions are found
|
776 |
+
return {"messages": [sys_msg] + state["messages"]}
|
777 |
+
|
778 |
+
builder = StateGraph(MessagesState)
|
779 |
+
builder.add_node("retriever", retriever)
|
780 |
+
builder.add_node("assistant", assistant)
|
781 |
+
builder.add_node("tools", ToolNode(tools))
|
782 |
+
builder.add_edge(START, "retriever")
|
783 |
+
builder.add_edge("retriever", "assistant")
|
784 |
+
builder.add_conditional_edges(
|
785 |
+
"assistant",
|
786 |
+
tools_condition,
|
787 |
+
)
|
788 |
+
builder.add_edge("tools", "assistant")
|
789 |
+
|
790 |
+
# Compile graph
|
791 |
+
return builder.compile()
|
792 |
+
|
793 |
+
|
794 |
+
# test
|
795 |
+
if __name__ == "__main__":
|
796 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
797 |
+
graph = build_graph(provider="groq")
|
798 |
+
messages = [HumanMessage(content=question)]
|
799 |
+
messages = graph.invoke({"messages": messages})
|
800 |
+
for m in messages["messages"]:
|
801 |
+
m.pretty_print()
|
app.py
CHANGED
@@ -1,196 +1,211 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Basic Agent Evaluation Runner"""
|
2 |
+
import os
|
3 |
+
import inspect
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
import pandas as pd
|
7 |
+
import time
|
8 |
+
from langchain_core.messages import HumanMessage
|
9 |
+
from agent import build_graph
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
# (Keep Constants as is)
|
14 |
+
# --- Constants ---
|
15 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
+
|
17 |
+
# --- Basic Agent Definition ---
|
18 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
19 |
+
|
20 |
+
|
21 |
+
class BasicAgent:
|
22 |
+
"""A langgraph agent."""
|
23 |
+
def __init__(self):
|
24 |
+
print("BasicAgent initialized.")
|
25 |
+
self.graph = build_graph()
|
26 |
+
|
27 |
+
def __call__(self, question: str) -> str:
|
28 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
+
# Wrap the question in a HumanMessage from langchain_core
|
30 |
+
messages = [HumanMessage(content=question)]
|
31 |
+
messages = self.graph.invoke({"messages": messages})
|
32 |
+
answer = messages['messages'][-1].content
|
33 |
+
return answer[14:]
|
34 |
+
|
35 |
+
|
36 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
37 |
+
"""
|
38 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
39 |
+
and displays the results.
|
40 |
+
"""
|
41 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
42 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
43 |
+
|
44 |
+
if profile:
|
45 |
+
username= f"{profile.username}"
|
46 |
+
print(f"User logged in: {username}")
|
47 |
+
else:
|
48 |
+
print("User not logged in.")
|
49 |
+
return "Please Login to Hugging Face with the button.", None
|
50 |
+
|
51 |
+
api_url = DEFAULT_API_URL
|
52 |
+
questions_url = f"{api_url}/questions"
|
53 |
+
submit_url = f"{api_url}/submit"
|
54 |
+
|
55 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
56 |
+
try:
|
57 |
+
agent = BasicAgent()
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error instantiating agent: {e}")
|
60 |
+
return f"Error initializing agent: {e}", None
|
61 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
62 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
63 |
+
print(agent_code)
|
64 |
+
|
65 |
+
# 2. Fetch Questions
|
66 |
+
print(f"Fetching questions from: {questions_url}")
|
67 |
+
try:
|
68 |
+
response = requests.get(questions_url, timeout=15)
|
69 |
+
response.raise_for_status()
|
70 |
+
questions_data = response.json()
|
71 |
+
if not questions_data:
|
72 |
+
print("Fetched questions list is empty.")
|
73 |
+
return "Fetched questions list is empty or invalid format.", None
|
74 |
+
print(f"Fetched {len(questions_data)} questions.")
|
75 |
+
except requests.exceptions.RequestException as e:
|
76 |
+
print(f"Error fetching questions: {e}")
|
77 |
+
return f"Error fetching questions: {e}", None
|
78 |
+
except requests.exceptions.JSONDecodeError as e:
|
79 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
80 |
+
print(f"Response text: {response.text[:500]}")
|
81 |
+
return f"Error decoding server response for questions: {e}", None
|
82 |
+
except Exception as e:
|
83 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
84 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
85 |
+
|
86 |
+
# 3. Run your Agent
|
87 |
+
results_log = []
|
88 |
+
answers_payload = []
|
89 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
90 |
+
for item in questions_data:
|
91 |
+
task_id = item.get("task_id")
|
92 |
+
question_text = item.get("question")
|
93 |
+
if not task_id or question_text is None:
|
94 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
95 |
+
continue
|
96 |
+
|
97 |
+
# time.sleep(10)
|
98 |
+
|
99 |
+
try:
|
100 |
+
submitted_answer = agent(question_text)
|
101 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
102 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error running agent on task {task_id}: {e}")
|
105 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
106 |
+
|
107 |
+
if not answers_payload:
|
108 |
+
print("Agent did not produce any answers to submit.")
|
109 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
110 |
+
|
111 |
+
# 4. Prepare Submission
|
112 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
113 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
114 |
+
print(status_update)
|
115 |
+
|
116 |
+
# 5. Submit
|
117 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
118 |
+
try:
|
119 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
120 |
+
response.raise_for_status()
|
121 |
+
result_data = response.json()
|
122 |
+
final_status = (
|
123 |
+
f"Submission Successful!\n"
|
124 |
+
f"User: {result_data.get('username')}\n"
|
125 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
126 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
127 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
128 |
+
)
|
129 |
+
print("Submission successful.")
|
130 |
+
results_df = pd.DataFrame(results_log)
|
131 |
+
return final_status, results_df
|
132 |
+
except requests.exceptions.HTTPError as e:
|
133 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
134 |
+
try:
|
135 |
+
error_json = e.response.json()
|
136 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
137 |
+
except requests.exceptions.JSONDecodeError:
|
138 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
139 |
+
status_message = f"Submission Failed: {error_detail}"
|
140 |
+
print(status_message)
|
141 |
+
results_df = pd.DataFrame(results_log)
|
142 |
+
return status_message, results_df
|
143 |
+
except requests.exceptions.Timeout:
|
144 |
+
status_message = "Submission Failed: The request timed out."
|
145 |
+
print(status_message)
|
146 |
+
results_df = pd.DataFrame(results_log)
|
147 |
+
return status_message, results_df
|
148 |
+
except requests.exceptions.RequestException as e:
|
149 |
+
status_message = f"Submission Failed: Network error - {e}"
|
150 |
+
print(status_message)
|
151 |
+
results_df = pd.DataFrame(results_log)
|
152 |
+
return status_message, results_df
|
153 |
+
except Exception as e:
|
154 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
155 |
+
print(status_message)
|
156 |
+
results_df = pd.DataFrame(results_log)
|
157 |
+
return status_message, results_df
|
158 |
+
|
159 |
+
|
160 |
+
# --- Build Gradio Interface using Blocks ---
|
161 |
+
with gr.Blocks() as demo:
|
162 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
163 |
+
gr.Markdown(
|
164 |
+
"""
|
165 |
+
**Instructions:**
|
166 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
167 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
168 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
169 |
+
---
|
170 |
+
**Disclaimers:**
|
171 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
172 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
173 |
+
"""
|
174 |
+
)
|
175 |
+
|
176 |
+
gr.LoginButton()
|
177 |
+
|
178 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
179 |
+
|
180 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
181 |
+
# Removed max_rows=10 from DataFrame constructor
|
182 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
183 |
+
|
184 |
+
run_button.click(
|
185 |
+
fn=run_and_submit_all,
|
186 |
+
outputs=[status_output, results_table]
|
187 |
+
)
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
191 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
192 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
193 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
194 |
+
|
195 |
+
if space_host_startup:
|
196 |
+
print(f"β
SPACE_HOST found: {space_host_startup}")
|
197 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
198 |
+
else:
|
199 |
+
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
200 |
+
|
201 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
202 |
+
print(f"β
SPACE_ID found: {space_id_startup}")
|
203 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
204 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
205 |
+
else:
|
206 |
+
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
207 |
+
|
208 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
209 |
+
|
210 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
211 |
+
demo.launch(debug=True, share=False)
|
code_interpreter.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import sys
|
4 |
+
import uuid
|
5 |
+
import base64
|
6 |
+
import traceback
|
7 |
+
import contextlib
|
8 |
+
import tempfile
|
9 |
+
import subprocess
|
10 |
+
import sqlite3
|
11 |
+
from typing import Dict, List, Any, Optional, Union
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
class CodeInterpreter:
|
18 |
+
def __init__(self, allowed_modules=None, max_execution_time=30, working_directory=None):
|
19 |
+
"""Initialize the code interpreter with safety measures."""
|
20 |
+
self.allowed_modules = allowed_modules or [
|
21 |
+
"numpy", "pandas", "matplotlib", "scipy", "sklearn",
|
22 |
+
"math", "random", "statistics", "datetime", "collections",
|
23 |
+
"itertools", "functools", "operator", "re", "json",
|
24 |
+
"sympy", "networkx", "nltk", "PIL", "pytesseract",
|
25 |
+
"cmath", "uuid", "tempfile", "requests", "urllib"
|
26 |
+
]
|
27 |
+
self.max_execution_time = max_execution_time
|
28 |
+
self.working_directory = working_directory or os.path.join(os.getcwd())
|
29 |
+
if not os.path.exists(self.working_directory):
|
30 |
+
os.makedirs(self.working_directory)
|
31 |
+
|
32 |
+
self.globals = {
|
33 |
+
"__builtins__": __builtins__,
|
34 |
+
"np": np,
|
35 |
+
"pd": pd,
|
36 |
+
"plt": plt,
|
37 |
+
"Image": Image,
|
38 |
+
}
|
39 |
+
self.temp_sqlite_db = os.path.join(tempfile.gettempdir(), "code_exec.db")
|
40 |
+
|
41 |
+
def execute_code(self, code: str, language: str = "python") -> Dict[str, Any]:
|
42 |
+
"""Execute the provided code in the selected programming language."""
|
43 |
+
language = language.lower()
|
44 |
+
execution_id = str(uuid.uuid4())
|
45 |
+
|
46 |
+
result = {
|
47 |
+
"execution_id": execution_id,
|
48 |
+
"status": "error",
|
49 |
+
"stdout": "",
|
50 |
+
"stderr": "",
|
51 |
+
"result": None,
|
52 |
+
"plots": [],
|
53 |
+
"dataframes": []
|
54 |
+
}
|
55 |
+
|
56 |
+
try:
|
57 |
+
if language == "python":
|
58 |
+
return self._execute_python(code, execution_id)
|
59 |
+
elif language == "bash":
|
60 |
+
return self._execute_bash(code, execution_id)
|
61 |
+
elif language == "sql":
|
62 |
+
return self._execute_sql(code, execution_id)
|
63 |
+
elif language == "c":
|
64 |
+
return self._execute_c(code, execution_id)
|
65 |
+
elif language == "java":
|
66 |
+
return self._execute_java(code, execution_id)
|
67 |
+
else:
|
68 |
+
result["stderr"] = f"Unsupported language: {language}"
|
69 |
+
except Exception as e:
|
70 |
+
result["stderr"] = str(e)
|
71 |
+
|
72 |
+
return result
|
73 |
+
|
74 |
+
def _execute_python(self, code: str, execution_id: str) -> dict:
|
75 |
+
output_buffer = io.StringIO()
|
76 |
+
error_buffer = io.StringIO()
|
77 |
+
result = {
|
78 |
+
"execution_id": execution_id,
|
79 |
+
"status": "error",
|
80 |
+
"stdout": "",
|
81 |
+
"stderr": "",
|
82 |
+
"result": None,
|
83 |
+
"plots": [],
|
84 |
+
"dataframes": []
|
85 |
+
}
|
86 |
+
|
87 |
+
try:
|
88 |
+
exec_dir = os.path.join(self.working_directory, execution_id)
|
89 |
+
os.makedirs(exec_dir, exist_ok=True)
|
90 |
+
plt.switch_backend('Agg')
|
91 |
+
|
92 |
+
with contextlib.redirect_stdout(output_buffer), contextlib.redirect_stderr(error_buffer):
|
93 |
+
exec_result = exec(code, self.globals)
|
94 |
+
|
95 |
+
if plt.get_fignums():
|
96 |
+
for i, fig_num in enumerate(plt.get_fignums()):
|
97 |
+
fig = plt.figure(fig_num)
|
98 |
+
img_path = os.path.join(exec_dir, f"plot_{i}.png")
|
99 |
+
fig.savefig(img_path)
|
100 |
+
with open(img_path, "rb") as img_file:
|
101 |
+
img_data = base64.b64encode(img_file.read()).decode('utf-8')
|
102 |
+
result["plots"].append({
|
103 |
+
"figure_number": fig_num,
|
104 |
+
"data": img_data
|
105 |
+
})
|
106 |
+
|
107 |
+
for var_name, var_value in self.globals.items():
|
108 |
+
if isinstance(var_value, pd.DataFrame) and len(var_value) > 0:
|
109 |
+
result["dataframes"].append({
|
110 |
+
"name": var_name,
|
111 |
+
"head": var_value.head().to_dict(),
|
112 |
+
"shape": var_value.shape,
|
113 |
+
"dtypes": str(var_value.dtypes)
|
114 |
+
})
|
115 |
+
|
116 |
+
result["status"] = "success"
|
117 |
+
result["stdout"] = output_buffer.getvalue()
|
118 |
+
result["result"] = exec_result
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
result["status"] = "error"
|
122 |
+
result["stderr"] = f"{error_buffer.getvalue()}\n{traceback.format_exc()}"
|
123 |
+
|
124 |
+
return result
|
125 |
+
|
126 |
+
def _execute_bash(self, code: str, execution_id: str) -> dict:
|
127 |
+
try:
|
128 |
+
completed = subprocess.run(
|
129 |
+
code, shell=True, capture_output=True, text=True, timeout=self.max_execution_time
|
130 |
+
)
|
131 |
+
return {
|
132 |
+
"execution_id": execution_id,
|
133 |
+
"status": "success" if completed.returncode == 0 else "error",
|
134 |
+
"stdout": completed.stdout,
|
135 |
+
"stderr": completed.stderr,
|
136 |
+
"result": None,
|
137 |
+
"plots": [],
|
138 |
+
"dataframes": []
|
139 |
+
}
|
140 |
+
except subprocess.TimeoutExpired:
|
141 |
+
return {
|
142 |
+
"execution_id": execution_id,
|
143 |
+
"status": "error",
|
144 |
+
"stdout": "",
|
145 |
+
"stderr": "Execution timed out.",
|
146 |
+
"result": None,
|
147 |
+
"plots": [],
|
148 |
+
"dataframes": []
|
149 |
+
}
|
150 |
+
|
151 |
+
def _execute_sql(self, code: str, execution_id: str) -> dict:
|
152 |
+
result = {
|
153 |
+
"execution_id": execution_id,
|
154 |
+
"status": "error",
|
155 |
+
"stdout": "",
|
156 |
+
"stderr": "",
|
157 |
+
"result": None,
|
158 |
+
"plots": [],
|
159 |
+
"dataframes": []
|
160 |
+
}
|
161 |
+
try:
|
162 |
+
conn = sqlite3.connect(self.temp_sqlite_db)
|
163 |
+
cur = conn.cursor()
|
164 |
+
cur.execute(code)
|
165 |
+
if code.strip().lower().startswith("select"):
|
166 |
+
columns = [description[0] for description in cur.description]
|
167 |
+
rows = cur.fetchall()
|
168 |
+
df = pd.DataFrame(rows, columns=columns)
|
169 |
+
result["dataframes"].append({
|
170 |
+
"name": "query_result",
|
171 |
+
"head": df.head().to_dict(),
|
172 |
+
"shape": df.shape,
|
173 |
+
"dtypes": str(df.dtypes)
|
174 |
+
})
|
175 |
+
else:
|
176 |
+
conn.commit()
|
177 |
+
|
178 |
+
result["status"] = "success"
|
179 |
+
result["stdout"] = "Query executed successfully."
|
180 |
+
|
181 |
+
except Exception as e:
|
182 |
+
result["stderr"] = str(e)
|
183 |
+
finally:
|
184 |
+
conn.close()
|
185 |
+
|
186 |
+
return result
|
187 |
+
|
188 |
+
def _execute_c(self, code: str, execution_id: str) -> dict:
|
189 |
+
temp_dir = tempfile.mkdtemp()
|
190 |
+
source_path = os.path.join(temp_dir, "program.c")
|
191 |
+
binary_path = os.path.join(temp_dir, "program")
|
192 |
+
|
193 |
+
try:
|
194 |
+
with open(source_path, "w") as f:
|
195 |
+
f.write(code)
|
196 |
+
|
197 |
+
compile_proc = subprocess.run(
|
198 |
+
["gcc", source_path, "-o", binary_path],
|
199 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
200 |
+
)
|
201 |
+
if compile_proc.returncode != 0:
|
202 |
+
return {
|
203 |
+
"execution_id": execution_id,
|
204 |
+
"status": "error",
|
205 |
+
"stdout": compile_proc.stdout,
|
206 |
+
"stderr": compile_proc.stderr,
|
207 |
+
"result": None,
|
208 |
+
"plots": [],
|
209 |
+
"dataframes": []
|
210 |
+
}
|
211 |
+
|
212 |
+
run_proc = subprocess.run(
|
213 |
+
[binary_path],
|
214 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
215 |
+
)
|
216 |
+
return {
|
217 |
+
"execution_id": execution_id,
|
218 |
+
"status": "success" if run_proc.returncode == 0 else "error",
|
219 |
+
"stdout": run_proc.stdout,
|
220 |
+
"stderr": run_proc.stderr,
|
221 |
+
"result": None,
|
222 |
+
"plots": [],
|
223 |
+
"dataframes": []
|
224 |
+
}
|
225 |
+
except Exception as e:
|
226 |
+
return {
|
227 |
+
"execution_id": execution_id,
|
228 |
+
"status": "error",
|
229 |
+
"stdout": "",
|
230 |
+
"stderr": str(e),
|
231 |
+
"result": None,
|
232 |
+
"plots": [],
|
233 |
+
"dataframes": []
|
234 |
+
}
|
235 |
+
|
236 |
+
def _execute_java(self, code: str, execution_id: str) -> dict:
|
237 |
+
temp_dir = tempfile.mkdtemp()
|
238 |
+
source_path = os.path.join(temp_dir, "Main.java")
|
239 |
+
|
240 |
+
try:
|
241 |
+
with open(source_path, "w") as f:
|
242 |
+
f.write(code)
|
243 |
+
|
244 |
+
compile_proc = subprocess.run(
|
245 |
+
["javac", source_path],
|
246 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
247 |
+
)
|
248 |
+
if compile_proc.returncode != 0:
|
249 |
+
return {
|
250 |
+
"execution_id": execution_id,
|
251 |
+
"status": "error",
|
252 |
+
"stdout": compile_proc.stdout,
|
253 |
+
"stderr": compile_proc.stderr,
|
254 |
+
"result": None,
|
255 |
+
"plots": [],
|
256 |
+
"dataframes": []
|
257 |
+
}
|
258 |
+
|
259 |
+
run_proc = subprocess.run(
|
260 |
+
["java", "-cp", temp_dir, "Main"],
|
261 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
262 |
+
)
|
263 |
+
return {
|
264 |
+
"execution_id": execution_id,
|
265 |
+
"status": "success" if run_proc.returncode == 0 else "error",
|
266 |
+
"stdout": run_proc.stdout,
|
267 |
+
"stderr": run_proc.stderr,
|
268 |
+
"result": None,
|
269 |
+
"plots": [],
|
270 |
+
"dataframes": []
|
271 |
+
}
|
272 |
+
except Exception as e:
|
273 |
+
return {
|
274 |
+
"execution_id": execution_id,
|
275 |
+
"status": "error",
|
276 |
+
"stdout": "",
|
277 |
+
"stderr": str(e),
|
278 |
+
"result": None,
|
279 |
+
"plots": [],
|
280 |
+
"dataframes": []
|
281 |
+
}
|
explore_metadata.ipynb
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 9,
|
6 |
+
"id": "a600d7fc",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import json \n",
|
11 |
+
"with open('metadata.jsonl', 'r') as f: \n",
|
12 |
+
" json_list = list(f)\n",
|
13 |
+
"\n",
|
14 |
+
"json_QA = []\n",
|
15 |
+
"for json_str in json_list: \n",
|
16 |
+
" json_data = json.loads(json_str)\n",
|
17 |
+
" json_QA.append(json_data)"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 10,
|
23 |
+
"id": "fa5d8eb8",
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [
|
26 |
+
{
|
27 |
+
"name": "stdout",
|
28 |
+
"output_type": "stream",
|
29 |
+
"text": [
|
30 |
+
"==================================================\n",
|
31 |
+
"Task ID: d1af70ea-a9a4-421a-b9cc-94b5e02f1788\n",
|
32 |
+
"Question: As of the 2020 census, what was the population difference between the largest county seat and smallest county seat, by land area of the county seat, in Washington state? For population figures, please use the official data from data.census.gov. Please report the integer difference.\n",
|
33 |
+
"Level: 2\n",
|
34 |
+
"Final Answer: 736455\n",
|
35 |
+
"Annotator Metadata: \n",
|
36 |
+
" βββ Steps: \n",
|
37 |
+
" β βββ Step 1: Using a web browser, access a search engine and conduct a search, \"Washington cities by area\"\n",
|
38 |
+
" β βββ Step 2: Navigate to the second search result, https://en.wikipedia.org/wiki/List_of_municipalities_in_Washington\n",
|
39 |
+
" β βββ Step 3: Evaluate the page contents, finding the largest and smallest county seats by land area, Seattle and Cathlamet\n",
|
40 |
+
" β βββ Step 4: Using a web browser, navigate to https://data.census.gov/\n",
|
41 |
+
" β βββ Step 5: Using the website's search area, conduct a search, Seattle, Washington\n",
|
42 |
+
" β βββ Step 6: Record the reported 2020 Decennial Census population of Seattle, Washington, 737,015\n",
|
43 |
+
" β βββ Step 7: Using the website's search area, conduct a search, Cathlamet, Washington\n",
|
44 |
+
" β βββ Step 8: Record the reported 2020 Decennial Census population of Cathlamet, Washington, 560\n",
|
45 |
+
" β βββ Step 9: Using a calculator, find the difference in populations,\n",
|
46 |
+
" β βββ \n",
|
47 |
+
" β βββ 737,015 - 560\n",
|
48 |
+
" β βββ 736,455\n",
|
49 |
+
" β βββ Step 10: Report the correct answer to my user in the requested format, \"736,455\"\n",
|
50 |
+
" βββ Number of steps: 10\n",
|
51 |
+
" βββ How long did this take?: 5 minutes\n",
|
52 |
+
" βββ Tools:\n",
|
53 |
+
" β βββ 1. A web browser\n",
|
54 |
+
" β βββ 2. A search engine\n",
|
55 |
+
" β βββ 3. A calculator\n",
|
56 |
+
" βββ Number of tools: 3\n",
|
57 |
+
"==================================================\n"
|
58 |
+
]
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"source": [
|
62 |
+
"import random\n",
|
63 |
+
"random_samples = random.sample(json_QA, 1)\n",
|
64 |
+
"for sample in random_samples:\n",
|
65 |
+
" print(\"=\" * 50)\n",
|
66 |
+
" print(f\"Task ID: {sample['task_id']}\")\n",
|
67 |
+
" print(f\"Question: {sample['Question']}\")\n",
|
68 |
+
" print(f\"Level: {sample['Level']}\")\n",
|
69 |
+
" print(f\"Final Answer: {sample['Final answer']}\")\n",
|
70 |
+
" print(f\"Annotator Metadata: \")\n",
|
71 |
+
" print(f\" βββ Steps: \")\n",
|
72 |
+
" for step in sample['Annotator Metadata']['Steps'].split('\\n'):\n",
|
73 |
+
" print(f\" β βββ {step}\")\n",
|
74 |
+
" print(f\" βββ Number of steps: {sample['Annotator Metadata']['Number of steps']}\")\n",
|
75 |
+
" print(f\" βββ How long did this take?: {sample['Annotator Metadata']['How long did this take?']}\")\n",
|
76 |
+
" print(f\" βββ Tools:\")\n",
|
77 |
+
" for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
|
78 |
+
" print(f\" β βββ {tool}\")\n",
|
79 |
+
" print(f\" βββ Number of tools: {sample['Annotator Metadata']['Number of tools']}\")\n",
|
80 |
+
"print(\"=\" * 50)"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": 11,
|
86 |
+
"id": "05076516",
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [],
|
89 |
+
"source": [
|
90 |
+
"import os\n",
|
91 |
+
"from dotenv import load_dotenv\n",
|
92 |
+
"from langchain_huggingface import HuggingFaceEmbeddings\n",
|
93 |
+
"from langchain_community.vectorstores import SupabaseVectorStore\n",
|
94 |
+
"from supabase.client import Client, create_client\n",
|
95 |
+
"\n",
|
96 |
+
"\n",
|
97 |
+
"load_dotenv()\n",
|
98 |
+
"embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") # dim=768\n",
|
99 |
+
"\n",
|
100 |
+
"supabase_url = os.environ.get(\"SUPABASE_URL\")\n",
|
101 |
+
"supabase_key = os.environ.get(\"SUPABASE_SERVICE_ROLE_KEY\")\n",
|
102 |
+
"supabase: Client = create_client(supabase_url, supabase_key)"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 20,
|
108 |
+
"id": "aa1402e3",
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"from langchain.schema import Document\n",
|
113 |
+
"docs = []\n",
|
114 |
+
"cnt = 0 \n",
|
115 |
+
"for sample in json_QA:\n",
|
116 |
+
" content = f\"Question : {sample['Question']}\\n\\nFinal answer : {sample['Final answer']}\"\n",
|
117 |
+
" doc = {\n",
|
118 |
+
" \"id\" : cnt,\n",
|
119 |
+
" \"content\" : content,\n",
|
120 |
+
" \"metadata\" : {\n",
|
121 |
+
" \"source\" : sample['task_id']\n",
|
122 |
+
" },\n",
|
123 |
+
" \"embedding\" : embeddings.embed_query(content),\n",
|
124 |
+
" }\n",
|
125 |
+
" docs.append(doc)\n",
|
126 |
+
" cnt += 1\n",
|
127 |
+
"\n",
|
128 |
+
"# upload the documents to the vector database\n",
|
129 |
+
"try:\n",
|
130 |
+
" response = (\n",
|
131 |
+
" supabase.table(\"documents2\")\n",
|
132 |
+
" .insert(docs)\n",
|
133 |
+
" .execute()\n",
|
134 |
+
" )\n",
|
135 |
+
"except Exception as exception:\n",
|
136 |
+
" print(\"Error inserting data into Supabase:\", exception)\n",
|
137 |
+
"\n",
|
138 |
+
"# # Save the documents (a list of dict) into a csv file, and manually upload it to Supabase\n",
|
139 |
+
"# import pandas as pd\n",
|
140 |
+
"# df = pd.DataFrame(docs)\n",
|
141 |
+
"# df.to_csv('supabase_docs.csv',index=False)"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"execution_count": 41,
|
147 |
+
"id": "9aa7eb5e",
|
148 |
+
"metadata": {},
|
149 |
+
"outputs": [],
|
150 |
+
"source": [
|
151 |
+
"# add items to vector database\n",
|
152 |
+
"vector_store = SupabaseVectorStore(\n",
|
153 |
+
" client=supabase,\n",
|
154 |
+
" embedding= embeddings,\n",
|
155 |
+
" table_name=\"documents2\",\n",
|
156 |
+
" query_name=\"match_documents_2\",\n",
|
157 |
+
")\n",
|
158 |
+
"retriever = vector_store.as_retriever()"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": 42,
|
164 |
+
"id": "9eecafd1",
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"query = \"On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\"\n",
|
169 |
+
"# matched_docs = vector_store.similarity_search(query, k=2)\n",
|
170 |
+
"docs = retriever.invoke(query)"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 43,
|
176 |
+
"id": "ff917840",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [
|
179 |
+
{
|
180 |
+
"data": {
|
181 |
+
"text/plain": [
|
182 |
+
"Document(metadata={'source': '840bfca7-4f7b-481a-8794-c560c340185d'}, page_content='Question : On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\\n\\nFinal answer : 80GSFC21M0002')"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
"execution_count": 43,
|
186 |
+
"metadata": {},
|
187 |
+
"output_type": "execute_result"
|
188 |
+
}
|
189 |
+
],
|
190 |
+
"source": [
|
191 |
+
"docs[0]"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"execution_count": 44,
|
197 |
+
"id": "01c8f337",
|
198 |
+
"metadata": {},
|
199 |
+
"outputs": [
|
200 |
+
{
|
201 |
+
"name": "stdout",
|
202 |
+
"output_type": "stream",
|
203 |
+
"text": [
|
204 |
+
"List of tools used in all samples:\n",
|
205 |
+
"Total number of tools used: 83\n",
|
206 |
+
" βββ web browser: 107\n",
|
207 |
+
" βββ image recognition tools (to identify and parse a figure with three axes): 1\n",
|
208 |
+
" βββ search engine: 101\n",
|
209 |
+
" βββ calculator: 34\n",
|
210 |
+
" βββ unlambda compiler (optional): 1\n",
|
211 |
+
" βββ a web browser.: 2\n",
|
212 |
+
" βββ a search engine.: 2\n",
|
213 |
+
" βββ a calculator.: 1\n",
|
214 |
+
" βββ microsoft excel: 5\n",
|
215 |
+
" βββ google search: 1\n",
|
216 |
+
" βββ ne: 9\n",
|
217 |
+
" βββ pdf access: 7\n",
|
218 |
+
" βββ file handling: 2\n",
|
219 |
+
" βββ python: 3\n",
|
220 |
+
" βββ image recognition tools: 12\n",
|
221 |
+
" βββ jsonld file access: 1\n",
|
222 |
+
" βββ video parsing: 1\n",
|
223 |
+
" βββ python compiler: 1\n",
|
224 |
+
" βββ video recognition tools: 3\n",
|
225 |
+
" βββ pdf viewer: 7\n",
|
226 |
+
" βββ microsoft excel / google sheets: 3\n",
|
227 |
+
" βββ word document access: 1\n",
|
228 |
+
" βββ tool to extract text from images: 1\n",
|
229 |
+
" βββ a word reversal tool / script: 1\n",
|
230 |
+
" βββ counter: 1\n",
|
231 |
+
" βββ excel: 3\n",
|
232 |
+
" βββ image recognition: 5\n",
|
233 |
+
" βββ color recognition: 3\n",
|
234 |
+
" βββ excel file access: 3\n",
|
235 |
+
" βββ xml file access: 1\n",
|
236 |
+
" βββ access to the internet archive, web.archive.org: 1\n",
|
237 |
+
" βββ text processing/diff tool: 1\n",
|
238 |
+
" βββ gif parsing tools: 1\n",
|
239 |
+
" βββ a web browser: 7\n",
|
240 |
+
" βββ a search engine: 7\n",
|
241 |
+
" βββ a speech-to-text tool: 2\n",
|
242 |
+
" βββ code/data analysis tools: 1\n",
|
243 |
+
" βββ audio capability: 2\n",
|
244 |
+
" βββ pdf reader: 1\n",
|
245 |
+
" βββ markdown: 1\n",
|
246 |
+
" βββ a calculator: 5\n",
|
247 |
+
" βββ access to wikipedia: 3\n",
|
248 |
+
" βββ image recognition/ocr: 3\n",
|
249 |
+
" βββ google translate access: 1\n",
|
250 |
+
" βββ ocr: 4\n",
|
251 |
+
" βββ bass note data: 1\n",
|
252 |
+
" βββ text editor: 1\n",
|
253 |
+
" βββ xlsx file access: 1\n",
|
254 |
+
" βββ powerpoint viewer: 1\n",
|
255 |
+
" βββ csv file access: 1\n",
|
256 |
+
" βββ calculator (or use excel): 1\n",
|
257 |
+
" βββ computer algebra system: 1\n",
|
258 |
+
" βββ video processing software: 1\n",
|
259 |
+
" βββ audio processing software: 1\n",
|
260 |
+
" βββ computer vision: 1\n",
|
261 |
+
" βββ google maps: 1\n",
|
262 |
+
" βββ access to excel files: 1\n",
|
263 |
+
" βββ calculator (or ability to count): 1\n",
|
264 |
+
" βββ a file interface: 3\n",
|
265 |
+
" βββ a python ide: 1\n",
|
266 |
+
" βββ spreadsheet editor: 1\n",
|
267 |
+
" βββ tools required: 1\n",
|
268 |
+
" βββ b browser: 1\n",
|
269 |
+
" βββ image recognition and processing tools: 1\n",
|
270 |
+
" βββ computer vision or ocr: 1\n",
|
271 |
+
" βββ c++ compiler: 1\n",
|
272 |
+
" βββ access to google maps: 1\n",
|
273 |
+
" βββ youtube player: 1\n",
|
274 |
+
" βββ natural language processor: 1\n",
|
275 |
+
" βββ graph interaction tools: 1\n",
|
276 |
+
" βββ bablyonian cuniform -> arabic legend: 1\n",
|
277 |
+
" βββ access to youtube: 1\n",
|
278 |
+
" βββ image search tools: 1\n",
|
279 |
+
" βββ calculator or counting function: 1\n",
|
280 |
+
" βββ a speech-to-text audio processing tool: 1\n",
|
281 |
+
" βββ access to academic journal websites: 1\n",
|
282 |
+
" βββ pdf reader/extracter: 1\n",
|
283 |
+
" βββ rubik's cube model: 1\n",
|
284 |
+
" βββ wikipedia: 1\n",
|
285 |
+
" βββ video capability: 1\n",
|
286 |
+
" βββ image processing tools: 1\n",
|
287 |
+
" βββ age recognition software: 1\n",
|
288 |
+
" βββ youtube: 1\n"
|
289 |
+
]
|
290 |
+
}
|
291 |
+
],
|
292 |
+
"source": [
|
293 |
+
"# list of the tools used in all the samples\n",
|
294 |
+
"from collections import Counter, OrderedDict\n",
|
295 |
+
"\n",
|
296 |
+
"tools = []\n",
|
297 |
+
"for sample in json_QA:\n",
|
298 |
+
" for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
|
299 |
+
" tool = tool[2:].strip().lower()\n",
|
300 |
+
" if tool.startswith(\"(\"):\n",
|
301 |
+
" tool = tool[11:].strip()\n",
|
302 |
+
" tools.append(tool)\n",
|
303 |
+
"tools_counter = OrderedDict(Counter(tools))\n",
|
304 |
+
"print(\"List of tools used in all samples:\")\n",
|
305 |
+
"print(\"Total number of tools used:\", len(tools_counter))\n",
|
306 |
+
"for tool, count in tools_counter.items():\n",
|
307 |
+
" print(f\" βββ {tool}: {count}\")"
|
308 |
+
]
|
309 |
+
}
|
310 |
+
],
|
311 |
+
"metadata": {
|
312 |
+
"kernelspec": {
|
313 |
+
"display_name": "env",
|
314 |
+
"language": "python",
|
315 |
+
"name": "python3"
|
316 |
+
},
|
317 |
+
"language_info": {
|
318 |
+
"codemirror_mode": {
|
319 |
+
"name": "ipython",
|
320 |
+
"version": 3
|
321 |
+
},
|
322 |
+
"file_extension": ".py",
|
323 |
+
"mimetype": "text/x-python",
|
324 |
+
"name": "python",
|
325 |
+
"nbconvert_exporter": "python",
|
326 |
+
"pygments_lexer": "ipython3",
|
327 |
+
"version": "3.11.9"
|
328 |
+
}
|
329 |
+
},
|
330 |
+
"nbformat": 4,
|
331 |
+
"nbformat_minor": 5
|
332 |
+
}
|
image_processing.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import base64
|
4 |
+
import uuid
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Helper functions for image processing
|
8 |
+
def encode_image(image_path: str) -> str:
|
9 |
+
"""Convert an image file to base64 string."""
|
10 |
+
with open(image_path, "rb") as image_file:
|
11 |
+
return base64.b64encode(image_file.read()).decode("utf-8")
|
12 |
+
|
13 |
+
|
14 |
+
def decode_image(base64_string: str) -> Image.Image:
|
15 |
+
"""Convert a base64 string to a PIL Image."""
|
16 |
+
image_data = base64.b64decode(base64_string)
|
17 |
+
return Image.open(io.BytesIO(image_data))
|
18 |
+
|
19 |
+
|
20 |
+
def save_image(image: Image.Image, directory: str = "image_outputs") -> str:
|
21 |
+
"""Save a PIL Image to disk and return the path."""
|
22 |
+
os.makedirs(directory, exist_ok=True)
|
23 |
+
image_id = str(uuid.uuid4())
|
24 |
+
image_path = os.path.join(directory, f"{image_id}.png")
|
25 |
+
image.save(image_path)
|
26 |
+
return image_path
|
metadata.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
CHANGED
@@ -1,2 +1,20 @@
|
|
1 |
-
gradio
|
2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
requests
|
3 |
+
langchain
|
4 |
+
langchain-community
|
5 |
+
langchain-core
|
6 |
+
langchain-google-genai
|
7 |
+
langchain-huggingface
|
8 |
+
langchain-groq
|
9 |
+
langchain-tavily
|
10 |
+
langchain-chroma
|
11 |
+
langgraph
|
12 |
+
huggingface_hub
|
13 |
+
supabase
|
14 |
+
arxiv
|
15 |
+
pymupdf
|
16 |
+
wikipedia
|
17 |
+
pgvector
|
18 |
+
python-dotenv
|
19 |
+
pytesseract
|
20 |
+
matplotlib
|
supabase_docs.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
system_prompt.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
2 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
3 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
4 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, Apply the rules above for each element (number or string), ensure there is exactly one space after each comma.
|
5 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|