AnkamRishitha commited on
Commit
80e4144
·
verified ·
1 Parent(s): 81917a3

Upload 2 files

Browse files
Files changed (2) hide show
  1. agent 1.py +210 -0
  2. metadata (1) 1.jsonl +0 -0
agent 1.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from langgraph.graph import START, StateGraph, MessagesState
4
+ from langgraph.prebuilt import tools_condition, ToolNode
5
+ from langchain_google_genai import ChatGoogleGenerativeAI
6
+ from langchain_groq import ChatGroq
7
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
8
+ from langchain_community.tools.tavily_search import TavilySearchResults
9
+ from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
10
+ from langchain_community.vectorstores import Chroma
11
+ from langchain_core.documents import Document
12
+ from langchain_core.messages import SystemMessage, HumanMessage
13
+ from langchain_core.tools import tool
14
+ from langchain.tools.retriever import create_retriever_tool
15
+ import json
16
+ from langchain.vectorstores import Chroma
17
+ from langchain.embeddings import HuggingFaceEmbeddings
18
+ from langchain.schema import Document
19
+
20
+ load_dotenv()
21
+
22
+ os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
23
+ groq_api_key = os.getenv("GROQ_API_KEY")
24
+
25
+ # Tools
26
+ @tool
27
+ def multiply(a: int, b: int) -> int:
28
+ """Multiply two numbers.
29
+ Args:
30
+ a: first int
31
+ b: second int
32
+ """
33
+ return a * b
34
+
35
+ @tool
36
+ def add(a: int, b: int) -> int:
37
+ """Add two numbers.
38
+
39
+ Args:
40
+ a: first int
41
+ b: second int
42
+ """
43
+ return a + b
44
+
45
+ @tool
46
+ def subtract(a: int, b: int) -> int:
47
+ """Subtract two numbers.
48
+
49
+ Args:
50
+ a: first int
51
+ b: second int
52
+ """
53
+ return a - b
54
+
55
+ @tool
56
+ def divide(a: int, b: int) -> int:
57
+ """Divide two numbers.
58
+
59
+ Args:
60
+ a: first int
61
+ b: second int
62
+ """
63
+ if b == 0:
64
+ raise ValueError("Cannot divide by zero.")
65
+ return a / b
66
+
67
+ @tool
68
+ def modulus(a: int, b: int) -> int:
69
+ """Get the modulus of two numbers.
70
+
71
+ Args:
72
+ a: first int
73
+ b: second int
74
+ """
75
+ return a % b
76
+
77
+ @tool
78
+ def wiki_search(query: str) -> str:
79
+ """Search Wikipedia for a query and return maximum 2 results.
80
+
81
+ Args:
82
+ query: The search query."""
83
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
84
+ formatted_search_docs = "\n\n---\n\n".join(
85
+ [
86
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
87
+ for doc in search_docs
88
+ ])
89
+ return {"wiki_results": formatted_search_docs}
90
+
91
+ @tool
92
+ def web_search(query: str) -> str:
93
+ """Search Tavily for a query and return maximum 3 results.
94
+
95
+ Args:
96
+ query: The search query."""
97
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
98
+ formatted_search_docs = "\n\n---\n\n".join(
99
+ [
100
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
101
+ for doc in search_docs
102
+ ])
103
+ return {"web_results": formatted_search_docs}
104
+
105
+ @tool
106
+ def arvix_search(query: str) -> str:
107
+ """Search Arxiv for a query and return maximum 3 result.
108
+
109
+ Args:
110
+ query: The search query."""
111
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
112
+ formatted_search_docs = "\n\n---\n\n".join(
113
+ [
114
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
115
+ for doc in search_docs
116
+ ])
117
+ return {"arvix_results": formatted_search_docs}
118
+
119
+ @tool
120
+ def similar_question_search(question: str) -> str:
121
+ """Search the vector database for similar questions and return the first results.
122
+
123
+ Args:
124
+ question: the question human provided."""
125
+ matched_docs = vector_store.similarity_search(query, 3)
126
+ formatted_search_docs = "\n\n---\n\n".join(
127
+ [
128
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
129
+ for doc in matched_docs
130
+ ])
131
+ return {"similar_questions": formatted_search_docs}
132
+
133
+ # Load system prompt
134
+ system_prompt = """
135
+ You are a helpful assistant tasked with answering questions using a set of tools.
136
+ Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
137
+ FINAL ANSWER: [YOUR FINAL ANSWER].
138
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
139
+ Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
140
+ """
141
+
142
+ # System message
143
+ sys_msg = SystemMessage(content=system_prompt)
144
+
145
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
146
+
147
+ with open('metadata.jsonl', 'r') as jsonl_file:
148
+ json_list = list(jsonl_file)
149
+
150
+ json_QA = []
151
+ for json_str in json_list:
152
+ json_data = json.loads(json_str)
153
+ json_QA.append(json_data)
154
+
155
+ documents = []
156
+ for sample in json_QA:
157
+ content = f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}"
158
+ metadata = {"source": sample["task_id"]}
159
+ documents.append(Document(page_content=content, metadata=metadata))
160
+
161
+ # Initialize vector store and add documents
162
+ vector_store = Chroma.from_documents(
163
+ documents=documents,
164
+ embedding=embeddings,
165
+ persist_directory="./chroma_db",
166
+ collection_name="my_collection"
167
+ )
168
+ vector_store.persist()
169
+ print("Documents inserted:", vector_store._collection.count())
170
+
171
+
172
+ # Retriever tool (optional if you want to expose to agent)
173
+ retriever_tool = create_retriever_tool(
174
+ retriever=vector_store.as_retriever(),
175
+ name="Question Search",
176
+ description="A tool to retrieve similar questions from a vector store.",
177
+ )
178
+
179
+ # Tool list
180
+ tools = [
181
+ multiply, add, subtract, divide, modulus,
182
+ wiki_search, web_search, arvix_search,
183
+ ]
184
+
185
+ # Build graph
186
+ def build_graph(provider: str = "groq"):
187
+
188
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0,api_key=groq_api_key)
189
+ llm_with_tools = llm.bind_tools(tools)
190
+
191
+ def assistant(state: MessagesState):
192
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
193
+
194
+ def retriever(state: MessagesState):
195
+ similar = vector_store.similarity_search(state["messages"][0].content)
196
+ if similar:
197
+ example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}")
198
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
199
+ return {"messages": [sys_msg] + state["messages"]}
200
+
201
+ builder = StateGraph(MessagesState)
202
+ builder.add_node("retriever", retriever)
203
+ builder.add_node("assistant", assistant)
204
+ builder.add_node("tools", ToolNode(tools))
205
+ builder.add_edge(START, "retriever")
206
+ builder.add_edge("retriever", "assistant")
207
+ builder.add_conditional_edges("assistant", tools_condition)
208
+ builder.add_edge("tools", "assistant")
209
+
210
+ return builder.compile()
metadata (1) 1.jsonl ADDED
The diff for this file is too large to render. See raw diff