from smolagents import Tool import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, logging import warnings class SpeechRecognitionTool(Tool): name = "speech_to_text" description = """Transcribes speech from audio.""" inputs = { "audio": { "type": "string", "description": "Path to the audio file to transcribe.", }, "with_time_markers": { "type": "boolean", "description": "Whether to include timestamps in the transcription output. Each timestamp appears on its own line in the format [float, float], indicating the number of seconds elapsed from the start of the audio.", "nullable": True, "default": False, }, } output_type = "string" chunk_length_s = 30 def __new__(cls, *args, **kwargs): device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3-turbo" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) logging.set_verbosity_error() warnings.filterwarnings( "ignore", category=FutureWarning, message=r".*The input name `inputs` is deprecated.*", ) cls.pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, chunk_length_s=cls.chunk_length_s, return_timestamps=True, ) return super().__new__(cls, *args, **kwargs) def forward(self, audio: str, with_time_markers: bool = False) -> str: """ Transcribes speech from audio. Args: audio (str): Path to the audio file to transcribe. with_time_markers (bool): Whether to include timestamps in the transcription output. Each timestamp appears on its own line in the format [float], indicating the number of seconds elapsed from the start of the audio. Returns: str: The transcribed text. """ result = self.pipe(audio) if not with_time_markers: return result["text"].strip() txt = "" for chunk in self._normalize_chunks(result["chunks"]): txt += f"[{chunk['start']:.2f}]\n{chunk['text']}\n[{chunk['end']:.2f}]\n" return txt.strip() def transcribe(self, audio, **kwargs): result = self.pipe(audio, **kwargs) return self._normalize_chunks(result["chunks"]) def _normalize_chunks(self, chunks): chunk_length_s = self.chunk_length_s absolute_offset = 0.0 chunk_offset = 0.0 normalized = [] for chunk in chunks: timestamp_start = chunk["timestamp"][0] timestamp_end = chunk["timestamp"][1] if timestamp_start < chunk_offset: absolute_offset += chunk_length_s chunk_offset = timestamp_start absolute_start = absolute_offset + timestamp_start if timestamp_end < timestamp_start: absolute_offset += chunk_length_s absolute_end = absolute_offset + timestamp_end chunk_offset = timestamp_end chunk_text = chunk["text"].strip() if chunk_text: normalized.append( { "start": absolute_start, "end": absolute_end, "text": chunk_text, } ) return normalized