import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.vectorstores import Chroma from langchain_core.documents import Document from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool import json from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.schema import Document load_dotenv() os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" groq_api_key = os.getenv("GROQ_API_KEY") # Tools @tool def multiply(a: int, b: int) -> int: """Multiply two numbers. Args: a: first int b: second int """ return a * b @tool def add(a: int, b: int) -> int: """Add two numbers. Args: a: first int b: second int """ return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers. Args: a: first int b: second int """ return a - b @tool def divide(a: int, b: int) -> int: """Divide two numbers. Args: a: first int b: second int """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a: first int b: second int """ return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results. Args: query: The search query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"wiki_results": formatted_search_docs} @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"web_results": formatted_search_docs} @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return {"arvix_results": formatted_search_docs} @tool def similar_question_search(question: str) -> str: """Search the vector database for similar questions and return the first results. Args: question: the question human provided.""" matched_docs = vector_store.similarity_search(query, 3) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in matched_docs ]) return {"similar_questions": formatted_search_docs} # Load system prompt system_prompt = """ You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """ # System message sys_msg = SystemMessage(content=system_prompt) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") with open('metadata.jsonl', 'r') as jsonl_file: json_list = list(jsonl_file) json_QA = [] for json_str in json_list: json_data = json.loads(json_str) json_QA.append(json_data) documents = [] for sample in json_QA: content = f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}" metadata = {"source": sample["task_id"]} documents.append(Document(page_content=content, metadata=metadata)) # Initialize vector store and add documents vector_store = Chroma.from_documents( documents=documents, embedding=embeddings, persist_directory="./chroma_db", collection_name="my_collection" ) vector_store.persist() print("Documents inserted:", vector_store._collection.count()) # Retriever tool (optional if you want to expose to agent) retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever(), name="Question Search", description="A tool to retrieve similar questions from a vector store.", ) # Tool list tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, ] # Build graph def build_graph(provider: str = "groq"): llm = ChatGroq(model="qwen-qwq-32b", temperature=0,api_key=groq_api_key) llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): return {"messages": [llm_with_tools.invoke(state["messages"])]} def retriever(state: MessagesState): similar = vector_store.similarity_search(state["messages"][0].content) if similar: example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}") return {"messages": [sys_msg] + state["messages"] + [example_msg]} return {"messages": [sys_msg] + state["messages"]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile()