File size: 4,957 Bytes
c29ac1a
 
 
 
 
 
 
 
 
 
 
 
286ea0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29ac1a
 
 
 
 
 
 
 
286ea0b
 
c29ac1a
286ea0b
 
c29ac1a
 
286ea0b
 
 
 
 
c29ac1a
 
 
286ea0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29ac1a
 
 
 
9313466
 
 
 
 
 
c29ac1a
 
 
286ea0b
 
 
 
 
 
 
 
 
 
 
 
 
c29ac1a
286ea0b
 
 
 
c29ac1a
286ea0b
 
 
 
 
 
 
 
c29ac1a
 
 
 
 
 
 
 
 
 
286ea0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29ac1a
 
 
 
286ea0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import PIL.Image
import transformers
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import os
import string
import functools
import re
import numpy as np
import spaces

# Model IDs
MODEL_IDS = {
    "Model 1 (Widgetcap 448)": "agentsea/paligemma-3b-ft-widgetcap-waveui-448",
    "Model 2 (WaveUI 896)": "agentsea/paligemma-3b-ft-waveui-896"
}
PROCESSOR_IDS = {
    "Model 1 (Widgetcap 448)": "google/paligemma-3b-pt-448",
    "Model 2 (WaveUI 896)": "google/paligemma-3b-pt-896"
}

# Load models and processors
models = {name: PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device)
          for name, model_id in MODEL_IDS.items()}
processors = {name: PaliGemmaProcessor.from_pretrained(processor_id)
              for name, processor_id in PROCESSOR_IDS.items()}

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

###### Transformers Inference
@spaces.GPU
def infer(
    image: PIL.Image.Image,
    text: str,
    max_new_tokens: int,
    model_choice: str
) -> str:
    model = models[model_choice]
    processor = processors[model_choice]
    inputs = processor(text=text, images=image, return_tensors="pt").to(device)
    with torch.inference_mode():
        generated_ids = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            do_sample=False
        )
    result = processor.batch_decode(generated_ids, skip_special_tokens=True)
    return result[0][len(text):].lstrip("\n")

def parse_segmentation(input_image, input_text, model_choice):
    out = infer(input_image, input_text, max_new_tokens=100, model_choice=model_choice)
    objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
    labels = set(obj.get('name') for obj in objs if obj.get('name'))
    color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
    highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
    annotated_img = (
        input_image,
        [
            (
                obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
                obj['name'] or '',
            )
            for obj in objs
            if 'mask' in obj or 'xyxy' in obj
        ],
    )
    has_annotations = bool(annotated_img[1])
    return annotated_img

######## Demo

INTRO_TEXT = """## PaliGemma WaveUI\n\n
[PaliGemma Widgetcap 448](https://huggingface.co/google/paligemma-3b-ft-widgetcap-448) fine-tuned on the [WaveUI-25k](https://huggingface.co/datasets/agentsea/wave-ui-25k) dataset for UI element detection.\n\n

Note:\n\n

- this model is fine-tuned on a subset of the WaveUI dataset and may not generalize to all UI elements.
- the task it was fine-tuned on was detection, so it may not generalize to other tasks.
"""

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(INTRO_TEXT)
    with gr.Tab("Detection"):
        model_choice = gr.Dropdown(label="Select Model", choices=list(MODEL_IDS.keys()))
        image = gr.Image(type="pil")
        seg_input = gr.Text(label="Detect instruction (e.g. 'detect sign in button')")
        seg_btn = gr.Button("Submit")
        annotated_image = gr.AnnotatedImage(label="Output")
        
        examples = [["./airbnb.jpg", "detect 'Amazing pools' button"]]
        gr.Examples(
            examples=examples,
            inputs=[image, seg_input],
        )

        seg_inputs = [
            image,
            seg_input,
            model_choice
        ]
        seg_outputs = [
            annotated_image
        ]
        seg_btn.click(
            fn=parse_segmentation,
            inputs=seg_inputs,
            outputs=seg_outputs,
        )


_SEGMENT_DETECT_RE = re.compile(
    r'(.*?)' +
    r'<loc(\d{4})>' * 4 + r'\s*' +
    '(?:%s)?' % (r'<seg(\d{3})>' * 16) +
    r'\s*([^;<>]+)? ?(?:; )?',
)

def extract_objs(text, width, height, unique_labels=False):
    """Returns objs for a string with "<loc>" and "<seg>" tokens."""
    objs = []
    seen = set()
    while text:
        m = _SEGMENT_DETECT_RE.match(text)
        if not m:
            break
        print("m", m)
        gs = list(m.groups())
        before = gs.pop(0)
        name = gs.pop()
        y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
        
        y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
        mask = None

        content = m.group()
        if before:
            objs.append(dict(content=before))
            content = content[len(before):]
        while unique_labels and name in seen:
            name = (name or '') + "'"
        seen.add(name)
        objs.append(dict(
            content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
        text = text[len(before) + len(content):]

    if text:
        objs.append(dict(content=text))

    return objs

#########

if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)