File size: 3,761 Bytes
c29ac1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef3c5a
c29ac1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import PIL.Image
import transformers
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import os
import string
import functools
import re
import numpy as np
import spaces


model_id = "agentsea/paligemma-3b-ft-widgetcap-waveui-448"
processor_id = "google/paligemma-3b-pt-448"
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device)
processor = PaliGemmaProcessor.from_pretrained(processor_id)

###### Transformers Inference
@spaces.GPU
def infer(
    image: PIL.Image.Image,
    text: str,
    max_new_tokens: int
) -> str:
    inputs = processor(text=text, images=image, return_tensors="pt").to(device)
    with torch.inference_mode():
      generated_ids = model.generate(
          **inputs,
          max_new_tokens=max_new_tokens,
          do_sample=False
      )
    result = processor.batch_decode(generated_ids, skip_special_tokens=True)
    return result[0][len(text):].lstrip("\n")

def parse_segmentation(input_image, input_text):
  out = infer(input_image, input_text, max_new_tokens=100)
  objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
  labels = set(obj.get('name') for obj in objs if obj.get('name'))
  color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
  highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
  annotated_img = (
    input_image,
    [
        (
            obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
            obj['name'] or '',
        )
        for obj in objs
        if 'mask' in obj or 'xyxy' in obj
    ],
)
  has_annotations = bool(annotated_img[1])
  return annotated_img

######## Demo

INTRO_TEXT = """## PaliGemma WaveUI\n\n
PaliGemma 448 fine-tuned on WaveUI dataset for UI element detection
"""


with gr.Blocks(css="style.css") as demo:
  gr.Markdown(INTRO_TEXT)
  with gr.Tab("Detection"):
    image = gr.Image(type="pil")
    seg_input = gr.Text(label="Entities to Detect")
    seg_btn = gr.Button("Submit")
    annotated_image = gr.AnnotatedImage(label="Output")
    
    examples = [["./airbnb.jpg", "detect 'Amazing pools' button"]]
    gr.Examples(
        examples=examples,
        inputs=[image, seg_input],
    )

    seg_inputs = [
        image,
        seg_input
        ]
    seg_outputs = [
        annotated_image
    ]
    seg_btn.click(
        fn=parse_segmentation,
        inputs=seg_inputs,
        outputs=seg_outputs,
    )


_SEGMENT_DETECT_RE = re.compile(
    r'(.*?)' +
    r'<loc(\d{4})>' * 4 + r'\s*' +
    '(?:%s)?' % (r'<seg(\d{3})>' * 16) +
    r'\s*([^;<>]+)? ?(?:; )?',
)

def extract_objs(text, width, height, unique_labels=False):
  """Returns objs for a string with "<loc>" and "<seg>" tokens."""
  objs = []
  seen = set()
  while text:
    m = _SEGMENT_DETECT_RE.match(text)
    if not m:
      break
    print("m", m)
    gs = list(m.groups())
    before = gs.pop(0)
    name = gs.pop()
    y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
    
    y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
    mask = None

    content = m.group()
    if before:
      objs.append(dict(content=before))
      content = content[len(before):]
    while unique_labels and name in seen:
      name = (name or '') + "'"
    seen.add(name)
    objs.append(dict(
        content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
    text = text[len(before) + len(content):]

  if text:
    objs.append(dict(content=text))

  return objs

#########

if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)