Spaces:
Sleeping
Sleeping
Maxime Bourliatoux
commited on
Commit
·
3b6db3d
1
Parent(s):
6c2ad63
Initial commit
Browse files- .gitignore +2 -0
- README.md +32 -4
- app.py +155 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
chroma_db/*
|
2 |
+
__pycache__/*
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title: Chatbot
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.16.0
|
8 |
app_file: app.py
|
@@ -10,4 +10,32 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
|
|
|
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: GAIA Chatbot - level 3
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.16.0
|
8 |
app_file: app.py
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
# Run on a space
|
14 |
+
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
16 |
+
|
17 |
+
Simply push your code on a huggingface space.
|
18 |
+
|
19 |
+
# Run locally
|
20 |
+
|
21 |
+
You must have python (3.8)[https://www.python.org/downloads/].
|
22 |
+
|
23 |
+
Check https://www.gradio.app/guides/quickstart for more details about Gradio.
|
24 |
+
|
25 |
+
## Install dependencies
|
26 |
+
|
27 |
+
`pip install gradio`
|
28 |
+
|
29 |
+
`pip install -r requirements.txt`
|
30 |
+
|
31 |
+
## Add Mistral API Key to your environement variables
|
32 |
+
|
33 |
+
in `~/.profile` or `~/.bashrc`
|
34 |
+
|
35 |
+
`export MISTRAL_API_KEY=YOUR_API_KEY`
|
36 |
+
|
37 |
+
## Run your code
|
38 |
+
|
39 |
+
`python3 app.py`
|
40 |
+
|
41 |
+
## Open your browser to `http://127.0.0.1:7860`
|
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import gradio as gr
|
4 |
+
from llama_index import (
|
5 |
+
VectorStoreIndex,
|
6 |
+
download_loader,
|
7 |
+
)
|
8 |
+
import chromadb
|
9 |
+
|
10 |
+
from llama_index.llms import MistralAI
|
11 |
+
from llama_index.embeddings import MistralAIEmbedding
|
12 |
+
from llama_index.vector_stores import ChromaVectorStore
|
13 |
+
from llama_index.storage.storage_context import StorageContext
|
14 |
+
from llama_index import ServiceContext
|
15 |
+
|
16 |
+
title = "Gaia Mistral Chat RAG PDF Demo"
|
17 |
+
description = "Example of an assistant with Gradio, RAG from PDF documents and Mistral AI via its API"
|
18 |
+
placeholder = (
|
19 |
+
"Vous pouvez me posez une question sur ce contexte, appuyer sur Entrée pour valider"
|
20 |
+
)
|
21 |
+
placeholder_url = "Extract text from this url"
|
22 |
+
llm_model = "mistral-small"
|
23 |
+
|
24 |
+
env_api_key = os.environ.get("MISTRAL_API_KEY")
|
25 |
+
query_engine = None
|
26 |
+
|
27 |
+
# Define LLMs
|
28 |
+
llm = MistralAI(api_key=env_api_key, model=llm_model)
|
29 |
+
embed_model = MistralAIEmbedding(model_name="mistral-embed", api_key=env_api_key)
|
30 |
+
|
31 |
+
# create client and a new collection
|
32 |
+
db = chromadb.PersistentClient(path="./chroma_db")
|
33 |
+
chroma_collection = db.get_or_create_collection("quickstart")
|
34 |
+
|
35 |
+
# set up ChromaVectorStore and load in data
|
36 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
37 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
38 |
+
service_context = ServiceContext.from_defaults(
|
39 |
+
chunk_size=1024, llm=llm, embed_model=embed_model
|
40 |
+
)
|
41 |
+
|
42 |
+
PDFReader = download_loader("PDFReader")
|
43 |
+
loader = PDFReader()
|
44 |
+
|
45 |
+
index = VectorStoreIndex(
|
46 |
+
[], service_context=service_context, storage_context=storage_context
|
47 |
+
)
|
48 |
+
query_engine = index.as_query_engine(similarity_top_k=5)
|
49 |
+
|
50 |
+
|
51 |
+
def get_documents_in_db():
|
52 |
+
print("Fetching documents in DB")
|
53 |
+
docs = []
|
54 |
+
for item in chroma_collection.get(include=["metadatas"])["metadatas"]:
|
55 |
+
docs.append(json.loads(item["_node_content"])["metadata"]["file_name"])
|
56 |
+
docs = list(set(docs))
|
57 |
+
print(f"Found {len(docs)} documents")
|
58 |
+
out = "**List of files in db:**\n"
|
59 |
+
for d in docs:
|
60 |
+
out += " - " + d + "\n"
|
61 |
+
|
62 |
+
return out
|
63 |
+
|
64 |
+
|
65 |
+
def empty_db():
|
66 |
+
ids = chroma_collection.get()["ids"]
|
67 |
+
chroma_collection.delete(ids)
|
68 |
+
return get_documents_in_db()
|
69 |
+
|
70 |
+
|
71 |
+
def load_file(file):
|
72 |
+
documents = loader.load_data(file=file)
|
73 |
+
|
74 |
+
for doc in documents:
|
75 |
+
index.insert(doc)
|
76 |
+
|
77 |
+
return (
|
78 |
+
gr.Textbox(visible=False),
|
79 |
+
gr.Textbox(value=f"Document encoded ! You can ask questions", visible=True),
|
80 |
+
get_documents_in_db(),
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
def load_document(input_file):
|
85 |
+
file_name = input_file.name.split("/")[-1]
|
86 |
+
return gr.Textbox(value=f"Document loaded: {file_name}", visible=True)
|
87 |
+
|
88 |
+
|
89 |
+
with gr.Blocks() as demo:
|
90 |
+
gr.Markdown(
|
91 |
+
""" # Welcome to Gaia Level 3 Demo
|
92 |
+
|
93 |
+
Add a file before interacting with the Chat.
|
94 |
+
This demo allows you to interact with a pdf file and then ask questions to Mistral APIs.
|
95 |
+
Mistral will answer with the context extracted from your uploaded file.
|
96 |
+
|
97 |
+
*The files will stay in the database unless there is 48h of inactivty or you re-build the space.*
|
98 |
+
"""
|
99 |
+
)
|
100 |
+
|
101 |
+
gr.Markdown(""" ### 1 / Extract data from PDF """)
|
102 |
+
|
103 |
+
with gr.Row():
|
104 |
+
with gr.Column():
|
105 |
+
input_file = gr.File(
|
106 |
+
label="Load a pdf",
|
107 |
+
file_types=[".pdf"],
|
108 |
+
file_count="single",
|
109 |
+
type="filepath",
|
110 |
+
interactive=True,
|
111 |
+
)
|
112 |
+
file_msg = gr.Textbox(
|
113 |
+
label="Loaded documents:", container=False, visible=False
|
114 |
+
)
|
115 |
+
|
116 |
+
input_file.upload(
|
117 |
+
fn=load_document,
|
118 |
+
inputs=[
|
119 |
+
input_file,
|
120 |
+
],
|
121 |
+
outputs=[file_msg],
|
122 |
+
concurrency_limit=20,
|
123 |
+
)
|
124 |
+
|
125 |
+
file_btn = gr.Button(value="Encode file ✅", interactive=True)
|
126 |
+
btn_msg = gr.Textbox(container=False, visible=False)
|
127 |
+
|
128 |
+
with gr.Row():
|
129 |
+
db_list = gr.Markdown(value=get_documents_in_db)
|
130 |
+
delete_btn = gr.Button(value="Empty db 🗑️", interactive=True, scale=0)
|
131 |
+
|
132 |
+
file_btn.click(
|
133 |
+
load_file,
|
134 |
+
inputs=[input_file],
|
135 |
+
outputs=[file_msg, btn_msg, db_list],
|
136 |
+
show_progress="full",
|
137 |
+
)
|
138 |
+
delete_btn.click(empty_db, outputs=[db_list], show_progress="minimal")
|
139 |
+
|
140 |
+
gr.Markdown(""" ### 2 / Ask a question about this context """)
|
141 |
+
|
142 |
+
chatbot = gr.Chatbot()
|
143 |
+
msg = gr.Textbox(placeholder=placeholder)
|
144 |
+
clear = gr.ClearButton([msg, chatbot])
|
145 |
+
|
146 |
+
def respond(message, chat_history):
|
147 |
+
response = query_engine.query(message)
|
148 |
+
chat_history.append((message, str(response)))
|
149 |
+
return chat_history
|
150 |
+
|
151 |
+
msg.submit(respond, [msg, chatbot], [chatbot])
|
152 |
+
|
153 |
+
demo.title = title
|
154 |
+
|
155 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pypdf
|
2 |
+
mistralai
|
3 |
+
llama-index
|
4 |
+
gradio
|
5 |
+
chromadb
|