File size: 17,405 Bytes
3b82ac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
dataset_type = 'CocoDataset'
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/'
backend_args = None
max_epochs = 500
metainfo = {
    'classes': ('airplane', ),
    'palette': [
        (0, 128, 255),
    ]
}
num_classes = 1
train_pipeline = [
    dict(type='LoadImageFromFile', backend_args=None),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='RandomFlip', prob=0.5),
    dict(
        type='RandomChoice',
        transforms=[
            [
                dict(
                    type='RandomChoiceResize',
                    scales=[
                        (
                            480,
                            1333,
                        ),
                        (
                            512,
                            1333,
                        ),
                        (
                            544,
                            1333,
                        ),
                        (
                            576,
                            1333,
                        ),
                        (
                            608,
                            1333,
                        ),
                        (
                            640,
                            1333,
                        ),
                        (
                            672,
                            1333,
                        ),
                        (
                            704,
                            1333,
                        ),
                        (
                            736,
                            1333,
                        ),
                        (
                            768,
                            1333,
                        ),
                        (
                            800,
                            1333,
                        ),
                    ],
                    keep_ratio=True),
            ],
            [
                dict(
                    type='RandomChoiceResize',
                    scales=[
                        (
                            400,
                            1333,
                        ),
                        (
                            500,
                            1333,
                        ),
                        (
                            600,
                            1333,
                        ),
                    ],
                    keep_ratio=True),
                dict(
                    type='RandomCrop',
                    crop_type='absolute_range',
                    crop_size=(
                        384,
                        600,
                    ),
                    allow_negative_crop=True),
                dict(
                    type='RandomChoiceResize',
                    scales=[
                        (
                            480,
                            1333,
                        ),
                        (
                            512,
                            1333,
                        ),
                        (
                            544,
                            1333,
                        ),
                        (
                            576,
                            1333,
                        ),
                        (
                            608,
                            1333,
                        ),
                        (
                            640,
                            1333,
                        ),
                        (
                            672,
                            1333,
                        ),
                        (
                            704,
                            1333,
                        ),
                        (
                            736,
                            1333,
                        ),
                        (
                            768,
                            1333,
                        ),
                        (
                            800,
                            1333,
                        ),
                    ],
                    keep_ratio=True),
            ],
        ]),
    dict(type='PackDetInputs'),
]
test_pipeline = [
    dict(type='LoadImageFromFile', backend_args=None),
    dict(type='Resize', scale=(
        1333,
        800,
    ), keep_ratio=True),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='PackDetInputs',
        meta_keys=(
            'img_id',
            'img_path',
            'ori_shape',
            'img_shape',
            'scale_factor',
        )),
]
train_dataloader = dict(
    batch_size=8,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    batch_sampler=dict(type='AspectRatioBatchSampler'),
    dataset=dict(
        type='CocoDataset',
        metainfo=dict(classes=('airplane', ), palette=[
            (
                220,
                20,
                60,
            ),
        ]),
        data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
        ann_file='train/__coco.json',
        data_prefix=dict(img='train/'),
        filter_cfg=dict(filter_empty_gt=True, min_size=32),
        pipeline=[
            dict(type='LoadImageFromFile', backend_args=None),
            dict(type='LoadAnnotations', with_bbox=True),
            dict(type='RandomFlip', prob=0.5),
            dict(
                type='RandomChoice',
                transforms=[
                    [
                        dict(
                            type='RandomChoiceResize',
                            scales=[
                                (
                                    480,
                                    1333,
                                ),
                                (
                                    512,
                                    1333,
                                ),
                                (
                                    544,
                                    1333,
                                ),
                                (
                                    576,
                                    1333,
                                ),
                                (
                                    608,
                                    1333,
                                ),
                                (
                                    640,
                                    1333,
                                ),
                                (
                                    672,
                                    1333,
                                ),
                                (
                                    704,
                                    1333,
                                ),
                                (
                                    736,
                                    1333,
                                ),
                                (
                                    768,
                                    1333,
                                ),
                                (
                                    800,
                                    1333,
                                ),
                            ],
                            keep_ratio=True),
                    ],
                    [
                        dict(
                            type='RandomChoiceResize',
                            scales=[
                                (
                                    400,
                                    1333,
                                ),
                                (
                                    500,
                                    1333,
                                ),
                                (
                                    600,
                                    1333,
                                ),
                            ],
                            keep_ratio=True),
                        dict(
                            type='RandomCrop',
                            crop_type='absolute_range',
                            crop_size=(
                                384,
                                600,
                            ),
                            allow_negative_crop=True),
                        dict(
                            type='RandomChoiceResize',
                            scales=[
                                (
                                    480,
                                    1333,
                                ),
                                (
                                    512,
                                    1333,
                                ),
                                (
                                    544,
                                    1333,
                                ),
                                (
                                    576,
                                    1333,
                                ),
                                (
                                    608,
                                    1333,
                                ),
                                (
                                    640,
                                    1333,
                                ),
                                (
                                    672,
                                    1333,
                                ),
                                (
                                    704,
                                    1333,
                                ),
                                (
                                    736,
                                    1333,
                                ),
                                (
                                    768,
                                    1333,
                                ),
                                (
                                    800,
                                    1333,
                                ),
                            ],
                            keep_ratio=True),
                    ],
                ]),
            dict(type='PackDetInputs'),
        ],
        backend_args=None))
val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type='CocoDataset',
        metainfo=dict(classes=('airplane', ), palette=[
            (
                220,
                20,
                60,
            ),
        ]),
        data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
        ann_file='val/__coco.json',
        data_prefix=dict(img='val/'),
        test_mode=True,
        pipeline=[
            dict(type='LoadImageFromFile', backend_args=None),
            dict(type='Resize', scale=(
                1333,
                800,
            ), keep_ratio=True),
            dict(type='LoadAnnotations', with_bbox=True),
            dict(
                type='PackDetInputs',
                meta_keys=(
                    'img_id',
                    'img_path',
                    'ori_shape',
                    'img_shape',
                    'scale_factor',
                )),
        ],
        backend_args=None))
test_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type='CocoDataset',
        metainfo=dict(classes=('airplane', ), palette=[
            (
                220,
                20,
                60,
            ),
        ]),
        data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
        ann_file='test/__coco.json',
        data_prefix=dict(img='test/'),
        test_mode=True,
        pipeline=[
            dict(type='LoadImageFromFile', backend_args=None),
            dict(type='Resize', scale=(
                1333,
                800,
            ), keep_ratio=True),
            dict(type='LoadAnnotations', with_bbox=True),
            dict(
                type='PackDetInputs',
                meta_keys=(
                    'img_id',
                    'img_path',
                    'ori_shape',
                    'img_shape',
                    'scale_factor',
                )),
        ],
        backend_args=None))
val_evaluator = dict(
    type='CocoMetric',
    ann_file='/home/safouane/Downloads/benchmark_aircraft/data/val/__coco.json',
    metric='bbox',
    format_only=False,
    backend_args=None)
test_evaluator = dict(
    type='CocoMetric',
    ann_file=
    '/home/safouane/Downloads/benchmark_aircraft/data/test/__coco.json',
    metric='bbox',
    format_only=False,
    backend_args=None)
default_scope = 'mmdet'
default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=5),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(type='CheckpointHook', interval=5, save_best='auto'),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    visualization=dict(type='DetVisualizationHook'))
env_cfg = dict(
    cudnn_benchmark=False,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    dist_cfg=dict(backend='nccl'))
vis_backends = [
    dict(type='LocalVisBackend'),
]
visualizer = dict(
    type='DetLocalVisualizer',
    vis_backends=[
        dict(type='LocalVisBackend'),
        dict(type='TensorboardVisBackend'),
    ],
    name='visualizer')
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
log_level = 'INFO'
load_from = '/home/safouane/Downloads/benchmark_aircraft/mmdetection/configs/detr/checkpoints/detr_r50_8xb2-150e_coco_20221023_153551-436d03e8.pth'
resume = False
model = dict(
    type='DETR',
    num_queries=100,
    data_preprocessor=dict(
        type='DetDataPreprocessor',
        mean=[
            123.675,
            116.28,
            103.53,
        ],
        std=[
            58.395,
            57.12,
            57.375,
        ],
        bgr_to_rgb=True,
        pad_size_divisor=1),
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(3, ),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=False),
        norm_eval=True,
        style='pytorch',
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
    neck=dict(
        type='ChannelMapper',
        in_channels=[
            2048,
        ],
        kernel_size=1,
        out_channels=256,
        act_cfg=None,
        norm_cfg=None,
        num_outs=1),
    encoder=dict(
        num_layers=6,
        layer_cfg=dict(
            self_attn_cfg=dict(
                embed_dims=256, num_heads=8, dropout=0.1, batch_first=True),
            ffn_cfg=dict(
                embed_dims=256,
                feedforward_channels=2048,
                num_fcs=2,
                ffn_drop=0.1,
                act_cfg=dict(type='ReLU', inplace=True)))),
    decoder=dict(
        num_layers=6,
        layer_cfg=dict(
            self_attn_cfg=dict(
                embed_dims=256, num_heads=8, dropout=0.1, batch_first=True),
            cross_attn_cfg=dict(
                embed_dims=256, num_heads=8, dropout=0.1, batch_first=True),
            ffn_cfg=dict(
                embed_dims=256,
                feedforward_channels=2048,
                num_fcs=2,
                ffn_drop=0.1,
                act_cfg=dict(type='ReLU', inplace=True))),
        return_intermediate=True),
    positional_encoding=dict(num_feats=128, normalize=True),
    bbox_head=dict(
        type='DETRHead',
        num_classes=1,
        embed_dims=256,
        loss_cls=dict(
            type='CrossEntropyLoss',
            bg_cls_weight=0.1,
            use_sigmoid=False,
            loss_weight=1.0,
            class_weight=1.0),
        loss_bbox=dict(type='L1Loss', loss_weight=5.0),
        loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
    train_cfg=dict(
        assigner=dict(
            type='HungarianAssigner',
            match_costs=[
                dict(type='ClassificationCost', weight=1.0),
                dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
                dict(type='IoUCost', iou_mode='giou', weight=2.0),
            ])),
    test_cfg=dict(max_per_img=100))
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='AdamW', lr=0.0001, weight_decay=0.0001),
    clip_grad=dict(max_norm=0.1, norm_type=2),
    paramwise_cfg=dict(
        custom_keys=dict(backbone=dict(lr_mult=0.1, decay_mult=1.0))))
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=500, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
    dict(
        type='MultiStepLR',
        begin=0,
        end=150,
        by_epoch=True,
        milestones=[
            100,
        ],
        gamma=0.1),
]
auto_scale_lr = dict(base_batch_size=16)
launcher = 'none'
work_dir = './work_dirs/detr_r50_8xb2-150e_coco'