llmscanner / app.py
agutfraind's picture
initial working version
863df0d
raw
history blame
4.63 kB
'''
LLM scanner streamlit app
streamlit run .\app.py
Functionality
- tokenize documents
- respond to queries
- generate new documents
Based on:
1. https://huggingface.co/spaces/llamaindex/llama_index_vector_demo
2. https://github.com/logan-markewich/llama_index_starter_pack/blob/main/streamlit_term_definition/
TODO:
- document upload
- customize to other [LLMs](https://gpt-index.readthedocs.io/en/latest/reference/llm_predictor.html#llama_index.llm_predictor.LLMPredictor)
- canned questions
'''
import os
import streamlit as st
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, ServiceContext, LLMPredictor, PromptHelper
from llama_index import StorageContext, load_index_from_storage
from langchain import OpenAI, HuggingFaceHub
import app_constants
index_fpath = "./index.json"
documents_folder = "./documents"
if "dummy" not in st.session_state:
st.session_state["dummy"] = "dummy"
@st.cache_resource #st makes this globally available for all users and sessions
def initialize_index(index_name, documents_folder):
"""
creates an index of the documents in the folder
if the index exists, skipped
"""
# set maximum input size
max_input_size = 4096
# set number of output tokens
num_outputs = 2000
# set maximum chunk overlap
max_chunk_overlap = 20
# set chunk size limit
chunk_size_limit = 600
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="text-davinci-003", max_tokens=num_outputs))
#wishlist: alternatives
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)
if os.path.exists(index_name):
storage_context = StorageContext.from_defaults(persist_dir=index_fpath)
doc_index = load_index_from_storage(service_context=service_context, storage_context=storage_context)
else:
#st.info("Updating the document index")
prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
documents = SimpleDirectoryReader(documents_folder).load_data()
doc_index = GPTVectorStoreIndex.from_documents(
documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper,
chunk_size_limit=512, service_context=service_context
)
doc_index.storage_context.persist(index_fpath)
return doc_index
#st returns data that's available for future caller
@st.cache_data(max_entries=200, persist=True)
def query_index(_index, query_text):
query_engine = _index.as_query_engine()
response = query_engine.query(query_text)
#response = _index.query(query_text)
return str(response)
#page format is directly written her
st.title("LLM scanner")
st.markdown(
(
"This app allows you to query documents!\n\n"
"Powered by [Llama Index](https://gpt-index.readthedocs.io/en/latest/index.html) and supporting multiple LLMs"
)
)
setup_tab, query_tab = st.tabs(
["Setup", "Query"]
)
with setup_tab:
st.subheader("LLM Setup")
api_key = st.text_input("Enter your OpenAI API key here", type="password")
#wishlist llm_name = st.selectbox(
# "Which LLM?", ["text-davinci-003", "gpt-3.5-turbo", "gpt-4"]
#)
#repo_id = "google/flan-t5-xl" # See https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads for some other options
#llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64})
#model_temperature = st.slider(
# "LLM Temperature", min_value=0.0, max_value=1.0, step=0.1
#)
with query_tab:
st.subheader("Query Tab")
st.write("Enter a query about the included documents. Find [documentation here](https://huggingface.co/spaces/agutfraind/llmscanner)")
doc_index = None
#api_key = st.text_input("Enter your OpenAI API key here:", type="password")
if api_key:
os.environ['OPENAI_API_KEY'] = api_key
doc_index = initialize_index(index_fpath, documents_folder)
if doc_index is None:
st.warning("Please enter your api key first.")
text = st.text_input("Query text:", value="What did the author do growing up?")
if st.button("Run Query") and text is not None:
response = query_index(doc_index, text)
st.markdown(response)
llm_col, embed_col = st.columns(2)
with llm_col:
st.markdown(f"LLM Tokens Used: {doc_index.service_context.llm_predictor._last_token_usage}")
with embed_col:
st.markdown(f"Embedding Tokens Used: {doc_index.service_context.embed_model._last_token_usage}")