Spaces:
Runtime error
Runtime error
Commit
·
7baa084
1
Parent(s):
863df0d
uploading docs
Browse files- .streamlit/config.toml +6 -0
- app.py +87 -30
- app_constants.py +6 -1
.streamlit/config.toml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
primaryColor="#F63366"
|
3 |
+
backgroundColor="#FFFFFF"
|
4 |
+
secondaryBackgroundColor="#F0F2F6"
|
5 |
+
textColor="#262730"
|
6 |
+
font="sans serif"
|
app.py
CHANGED
@@ -12,31 +12,29 @@ Based on:
|
|
12 |
1. https://huggingface.co/spaces/llamaindex/llama_index_vector_demo
|
13 |
2. https://github.com/logan-markewich/llama_index_starter_pack/blob/main/streamlit_term_definition/
|
14 |
|
15 |
-
|
16 |
TODO:
|
17 |
-
- document upload
|
18 |
- customize to other [LLMs](https://gpt-index.readthedocs.io/en/latest/reference/llm_predictor.html#llama_index.llm_predictor.LLMPredictor)
|
19 |
-
-
|
20 |
-
|
21 |
'''
|
22 |
|
23 |
import os
|
24 |
import streamlit as st
|
25 |
-
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, ServiceContext, LLMPredictor, PromptHelper
|
26 |
from llama_index import StorageContext, load_index_from_storage
|
27 |
|
28 |
from langchain import OpenAI, HuggingFaceHub
|
29 |
|
30 |
import app_constants
|
31 |
|
32 |
-
index_fpath = "./
|
33 |
-
documents_folder = "./documents"
|
34 |
|
35 |
if "dummy" not in st.session_state:
|
36 |
st.session_state["dummy"] = "dummy"
|
37 |
|
38 |
-
|
39 |
-
def initialize_index(index_name, documents_folder):
|
40 |
"""
|
41 |
creates an index of the documents in the folder
|
42 |
if the index exists, skipped
|
@@ -50,8 +48,10 @@ def initialize_index(index_name, documents_folder):
|
|
50 |
# set chunk size limit
|
51 |
chunk_size_limit = 600
|
52 |
|
53 |
-
llm_predictor = LLMPredictor(llm=OpenAI(
|
54 |
-
|
|
|
|
|
55 |
#wishlist: alternatives
|
56 |
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)
|
57 |
if os.path.exists(index_name):
|
@@ -66,8 +66,10 @@ def initialize_index(index_name, documents_folder):
|
|
66 |
documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper,
|
67 |
chunk_size_limit=512, service_context=service_context
|
68 |
)
|
69 |
-
|
|
|
70 |
|
|
|
71 |
return doc_index
|
72 |
|
73 |
#st returns data that's available for future caller
|
@@ -84,17 +86,18 @@ st.title("LLM scanner")
|
|
84 |
st.markdown(
|
85 |
(
|
86 |
"This app allows you to query documents!\n\n"
|
87 |
-
"Powered by [Llama Index](https://gpt-index.readthedocs.io/en/latest/index.html)
|
88 |
)
|
89 |
)
|
90 |
|
91 |
-
setup_tab, query_tab = st.tabs(
|
92 |
-
["Setup", "Query"]
|
93 |
)
|
94 |
|
95 |
with setup_tab:
|
96 |
st.subheader("LLM Setup")
|
97 |
api_key = st.text_input("Enter your OpenAI API key here", type="password")
|
|
|
98 |
#wishlist llm_name = st.selectbox(
|
99 |
# "Which LLM?", ["text-davinci-003", "gpt-3.5-turbo", "gpt-4"]
|
100 |
#)
|
@@ -105,6 +108,47 @@ with setup_tab:
|
|
105 |
# "LLM Temperature", min_value=0.0, max_value=1.0, step=0.1
|
106 |
#)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
with query_tab:
|
110 |
st.subheader("Query Tab")
|
@@ -114,22 +158,35 @@ with query_tab:
|
|
114 |
#api_key = st.text_input("Enter your OpenAI API key here:", type="password")
|
115 |
if api_key:
|
116 |
os.environ['OPENAI_API_KEY'] = api_key
|
117 |
-
doc_index = initialize_index(index_fpath, documents_folder)
|
118 |
-
|
119 |
|
120 |
if doc_index is None:
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
132 |
|
133 |
-
|
134 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
|
|
12 |
1. https://huggingface.co/spaces/llamaindex/llama_index_vector_demo
|
13 |
2. https://github.com/logan-markewich/llama_index_starter_pack/blob/main/streamlit_term_definition/
|
14 |
|
|
|
15 |
TODO:
|
|
|
16 |
- customize to other [LLMs](https://gpt-index.readthedocs.io/en/latest/reference/llm_predictor.html#llama_index.llm_predictor.LLMPredictor)
|
17 |
+
- guardrails on
|
18 |
+
- prevent answers on facts outside the document (e.g. birthdate of Michael Jordan in the docs vs. the baseball player)
|
19 |
'''
|
20 |
|
21 |
import os
|
22 |
import streamlit as st
|
23 |
+
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, ServiceContext, LLMPredictor, PromptHelper, readers
|
24 |
from llama_index import StorageContext, load_index_from_storage
|
25 |
|
26 |
from langchain import OpenAI, HuggingFaceHub
|
27 |
|
28 |
import app_constants
|
29 |
|
30 |
+
index_fpath = "./llamas_index"
|
31 |
+
documents_folder = "./documents" #initial documents - additional can be added via upload
|
32 |
|
33 |
if "dummy" not in st.session_state:
|
34 |
st.session_state["dummy"] = "dummy"
|
35 |
|
36 |
+
#@st.cache_resource #st makes this globally available for all users and sessions
|
37 |
+
def initialize_index(index_name, documents_folder, persisted_to_storage=True):
|
38 |
"""
|
39 |
creates an index of the documents in the folder
|
40 |
if the index exists, skipped
|
|
|
48 |
# set chunk size limit
|
49 |
chunk_size_limit = 600
|
50 |
|
51 |
+
llm_predictor = LLMPredictor(llm=OpenAI(openai_api_key=api_key, #from env
|
52 |
+
temperature=0.5,
|
53 |
+
model_name="text-davinci-003",
|
54 |
+
max_tokens=num_outputs))
|
55 |
#wishlist: alternatives
|
56 |
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)
|
57 |
if os.path.exists(index_name):
|
|
|
66 |
documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper,
|
67 |
chunk_size_limit=512, service_context=service_context
|
68 |
)
|
69 |
+
if persisted_to_storage:
|
70 |
+
doc_index.storage_context.persist(index_fpath)
|
71 |
|
72 |
+
#avoid this side-effect: st.session_state["doc_index"] = "doc_index"
|
73 |
return doc_index
|
74 |
|
75 |
#st returns data that's available for future caller
|
|
|
86 |
st.markdown(
|
87 |
(
|
88 |
"This app allows you to query documents!\n\n"
|
89 |
+
"Powered by [Llama Index](https://gpt-index.readthedocs.io/en/latest/index.html)"
|
90 |
)
|
91 |
)
|
92 |
|
93 |
+
setup_tab, upload_tab, query_tab = st.tabs(
|
94 |
+
["Setup", "Index", "Query"]
|
95 |
)
|
96 |
|
97 |
with setup_tab:
|
98 |
st.subheader("LLM Setup")
|
99 |
api_key = st.text_input("Enter your OpenAI API key here", type="password")
|
100 |
+
|
101 |
#wishlist llm_name = st.selectbox(
|
102 |
# "Which LLM?", ["text-davinci-003", "gpt-3.5-turbo", "gpt-4"]
|
103 |
#)
|
|
|
108 |
# "LLM Temperature", min_value=0.0, max_value=1.0, step=0.1
|
109 |
#)
|
110 |
|
111 |
+
if api_key is not None and "doc_index" not in st.session_state:
|
112 |
+
st.session_state["doc_index"] = initialize_index(index_fpath, documents_folder, persisted_to_storage=False)
|
113 |
+
|
114 |
+
|
115 |
+
with upload_tab:
|
116 |
+
st.subheader("Upload documents")
|
117 |
+
|
118 |
+
if st.button("Re-initialize index with pre-packaged documents"):
|
119 |
+
st.session_state["doc_index"] = initialize_index(index_fpath, documents_folder, persisted_to_storage=False)
|
120 |
+
st.info('Documents in index: ' + str(st.session_state["doc_index"].docstore.docs.__len__()))
|
121 |
+
|
122 |
+
if "doc_index" in st.session_state:
|
123 |
+
doc_index = st.session_state["doc_index"]
|
124 |
+
st.markdown(
|
125 |
+
"Either upload a document, or enter the text manually."
|
126 |
+
)
|
127 |
+
uploaded_file = st.file_uploader(
|
128 |
+
"Upload a document (pdf):", type=["pdf"]
|
129 |
+
)
|
130 |
+
document_text = st.text_area("Enter text")
|
131 |
+
if st.button("Add document to index") and (uploaded_file or document_text):
|
132 |
+
with st.spinner("Inserting (large files may be slow)..."):
|
133 |
+
if document_text:
|
134 |
+
doc_index.refresh([readers.Document(text=document_text)]) #tokenizes new documents
|
135 |
+
st.info('Documents in index: ' + str(st.session_state["doc_index"].docstore.docs.__len__()))
|
136 |
+
|
137 |
+
st.session_state["doc_index"] = doc_index
|
138 |
+
if uploaded_file:
|
139 |
+
uploads_folder = "uploads/"
|
140 |
+
if not os.path.exists(uploads_folder):
|
141 |
+
os.mkdir(uploads_folder)
|
142 |
+
#file_details = {"FileName":uploaded_file.name,"FileType":uploaded_file.type}
|
143 |
+
with open(uploads_folder + "tmp.pdf", "wb") as f:
|
144 |
+
f.write(uploaded_file.getbuffer())
|
145 |
+
documents = SimpleDirectoryReader(uploads_folder).load_data()
|
146 |
+
doc_index.refresh(documents) #tokenizes new documents
|
147 |
+
st.session_state["doc_index"] = doc_index
|
148 |
+
st.info('Documents in index: ' + str(st.session_state["doc_index"].docstore.docs.__len__()))
|
149 |
+
|
150 |
+
st.session_state["doc_index"] = doc_index
|
151 |
+
os.remove(uploads_folder + "tmp.pdf")
|
152 |
|
153 |
with query_tab:
|
154 |
st.subheader("Query Tab")
|
|
|
158 |
#api_key = st.text_input("Enter your OpenAI API key here:", type="password")
|
159 |
if api_key:
|
160 |
os.environ['OPENAI_API_KEY'] = api_key
|
161 |
+
#doc_index = initialize_index(index_fpath, documents_folder)
|
|
|
162 |
|
163 |
if doc_index is None:
|
164 |
+
if "doc_index" in st.session_state:
|
165 |
+
doc_index = st.session_state["doc_index"]
|
166 |
+
st.info('Documents in index: ' + str(doc_index.docstore.docs.__len__()))
|
167 |
+
else:
|
168 |
+
st.warning("Doc index is not available - initialize or upload")
|
169 |
+
#st.warning("Please enter your api key first.")
|
170 |
+
|
171 |
+
if doc_index and api_key:
|
172 |
+
select_type_your_own = 'type your own...'
|
173 |
+
options_for_queries = app_constants.canned_questions + [select_type_your_own]
|
174 |
+
query_selection = st.selectbox("Select option", options=options_for_queries)
|
175 |
+
query_text = None
|
176 |
|
177 |
+
if query_selection == select_type_your_own:
|
178 |
+
query_text = st.text_input("Query text")
|
179 |
+
else:
|
180 |
+
query_text = query_selection
|
181 |
+
|
182 |
+
if st.button("Run Query") and (doc_index is not None) and (query_text is not None):
|
183 |
+
response = query_index(doc_index, query_text)
|
184 |
+
st.markdown(response)
|
185 |
+
|
186 |
+
llm_col, embed_col = st.columns(2)
|
187 |
+
with llm_col:
|
188 |
+
st.markdown(f"LLM Tokens Used: {doc_index.service_context.llm_predictor._last_token_usage}")
|
189 |
+
|
190 |
+
with embed_col:
|
191 |
+
st.markdown(f"Embedding Tokens Used: {doc_index.service_context.embed_model._last_token_usage}")
|
192 |
|
app_constants.py
CHANGED
@@ -3,4 +3,9 @@ file for
|
|
3 |
- canned prompts
|
4 |
- constants (other than secrets)
|
5 |
|
6 |
-
'''
|
|
|
|
|
|
|
|
|
|
|
|
3 |
- canned prompts
|
4 |
- constants (other than secrets)
|
5 |
|
6 |
+
'''
|
7 |
+
|
8 |
+
canned_questions = [
|
9 |
+
"When was Paul Graham born?",
|
10 |
+
"What was his first startup?"
|
11 |
+
]
|