Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
+
from textwrap import fill
|
4 |
+
|
5 |
+
# Load the finetuned model and tokenizer
|
6 |
+
last_checkpoint = "model/checkpoint-1000"
|
7 |
+
finetuned_model = T5ForConditionalGeneration.from_pretrained(last_checkpoint)
|
8 |
+
tokenizer = T5Tokenizer.from_pretrained(last_checkpoint)
|
9 |
+
|
10 |
+
def answer_question(question):
|
11 |
+
inputs = "Answer this question truthfully: " + question
|
12 |
+
tokenized_inputs = tokenizer(inputs, return_tensors="pt", padding=True, truncation=True)
|
13 |
+
outputs = finetuned_model.generate(**tokenized_inputs)
|
14 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
+
|
16 |
+
# Assuming 'actual' answer is predefined for demonstration
|
17 |
+
actual = "Very low Mg2+ levels correspond to low PTH levels which in turn results in low Ca2+ levels."
|
18 |
+
|
19 |
+
return fill(answer, width=80), fill(actual, width=80)
|
20 |
+
|
21 |
+
# Create Gradio interface
|
22 |
+
iface = gr.Interface(
|
23 |
+
fn=answer_question,
|
24 |
+
inputs="text",
|
25 |
+
outputs=["text", "text"],
|
26 |
+
title="Medical Question Answering",
|
27 |
+
description="Enter a medical question to get a truthful answer from the finetuned T5 model.",
|
28 |
+
examples=[["What is the relationship between very low Mg2+ levels, PTH levels, and Ca2+ levels?"]]
|
29 |
+
)
|
30 |
+
|
31 |
+
# Launch the app
|
32 |
+
iface.launch()
|