Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Initialize the text generation pipeline
|
5 |
+
generator = pipeline('text-generation', model='gpt2')
|
6 |
+
|
7 |
+
def generate_blogpost(topic, max_length=500):
|
8 |
+
prompt = f"Write a blog post about {topic}:\n\n"
|
9 |
+
|
10 |
+
# Generate the blog post
|
11 |
+
generated_text = generator(prompt, max_length=max_length, num_return_sequences=1)[0]['generated_text']
|
12 |
+
|
13 |
+
# Remove the prompt from the generated text
|
14 |
+
blog_post = generated_text[len(prompt):].strip()
|
15 |
+
|
16 |
+
return blog_post
|
17 |
+
|
18 |
+
# Create the Gradio interface
|
19 |
+
iface = gr.Interface(
|
20 |
+
fn=generate_blogpost,
|
21 |
+
inputs=[
|
22 |
+
gr.Textbox(lines=1, placeholder="Enter the blog post topic here..."),
|
23 |
+
gr.Slider(minimum=100, maximum=1000, step=50, label="Max Length", value=500)
|
24 |
+
],
|
25 |
+
outputs="text",
|
26 |
+
title="Blog Post Generator",
|
27 |
+
description="Enter a topic, and this app will generate a blog post using GPT-2."
|
28 |
+
)
|
29 |
+
|
30 |
+
# Launch the app
|
31 |
+
iface.launch()
|