BERTonSST2Dataset / model.py
ahamedddd's picture
first commit
d222e8f
raw
history blame
638 Bytes
import torch
import torchtext
from torchtext.models import RobertaClassificationHead, XLMR_BASE_ENCODER
from torch import nn
def xlmr_base_encoder_model(num_classes:int=2, # default output classes = 2 (Bad, Good)):
# 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model
transforms = torchtext.models.XLMR_BASE_ENCODER.transform()
classifier_head = torchtext.RobertaClassificationHead(num_classes = 2, input_dim = 768)
model = XLMR_BASE_ENCODER.get_model(head = classifier_head)
# 4. Freeze all layers in the base model
for param in model.parameters():
param.requires_grad = False
return model, transforms