Spaces:
Runtime error
Runtime error
### 1. Imports and class names setup ### | |
import gradio as gr | |
import os | |
import torch | |
import torchvision | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
class_names = ["pizza", "steak", "sushi"] | |
### 2. Model and transforms preparation ### | |
effnetb2, effnetb2_transforms = create_effnetb2_model( | |
num_classes = 3 | |
) | |
# load save weights | |
effnetb2.load_state_dict( | |
torch.load( | |
f = "09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth", | |
map_location = torch.device("cpu") # Load the model to the CPU | |
) | |
) | |
### 3. Predict function ### | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index | |
# Put the model into eval mode, make prediction | |
effnetb2.eval() | |
with torch.inference_mode(): | |
# Pass transformed image through the model and turn the prediction logits into probabilities | |
pred_probs = torch.softmax(effnetb2(img), dim = 1) | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculate pred time | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article | |
title = "Foodvision Mini ππ₯©π£" | |
description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images as pizza, steak or sushi." | |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface)." | |
# Create an example list | |
example_list = [["examples/"+example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface( | |
fn = predict, # maps inputs to outputs | |
inputs = gr.Image(type="pil"), | |
outputs = [ | |
gr.Label(num_top_classes=3, label="Predictions"), | |
gr.Number(label="Prediction time (s)") | |
], | |
examples = example_list, | |
title = title, | |
description = description, | |
article = article | |
) | |
# launch the demo! | |
demo.launch() | |