### 1. Imports and class names setup ### import gradio as gr import os import torch import torchvision from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names class_names = ["pizza", "steak", "sushi"] ### 2. Model and transforms preparation ### effnetb2, effnetb2_transforms = create_effnetb2_model( num_classes = 3 ) # load save weights effnetb2.load_state_dict( torch.load( f = "09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth", map_location = torch.device("cpu") # Load the model to the CPU ) ) ### 3. Predict function ### def predict(img) -> Tuple[Dict, float]: # Start a timer start_time = timer() # Transform the input image for use with EffNetB2 img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index # Put the model into eval mode, make prediction effnetb2.eval() with torch.inference_mode(): # Pass transformed image through the model and turn the prediction logits into probabilities pred_probs = torch.softmax(effnetb2(img), dim = 1) # Create a prediction label and prediction probability dictionary pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate pred time end_time = timer() pred_time = round(end_time - start_time, 4) # Return pred dict and pred time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article title = "Foodvision Mini 🍕🥩🍣" description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images as pizza, steak or sushi." article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface)." # Create an example list example_list = [["examples/"+example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface( fn = predict, # maps inputs to outputs inputs = gr.Image(type="pil"), outputs = [ gr.Label(num_top_classes=3, label="Predictions"), gr.Number(label="Prediction time (s)") ], examples = example_list, title = title, description = description, article = article ) # launch the demo! demo.launch()