Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +151 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
7 |
+
from PIL import Image
|
8 |
+
from streamlit_image_select import image_select
|
9 |
+
from tqdm import tqdm
|
10 |
+
import os
|
11 |
+
import shutil
|
12 |
+
from PIL import Image
|
13 |
+
import torch
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
from datasets import load_dataset
|
16 |
+
from transformers import AutoProcessor, AutoModelForMaskGeneration
|
17 |
+
|
18 |
+
def show_mask(image, mask, ax=None):
|
19 |
+
fig, axes = plt.subplots()
|
20 |
+
axes.imshow(np.array(image))
|
21 |
+
color = np.array([30/255, 144/255, 255/255, 0.6])
|
22 |
+
h, w = mask.shape[-2:]
|
23 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
24 |
+
axes.imshow(mask_image)
|
25 |
+
canvas = FigureCanvasAgg(fig)
|
26 |
+
canvas.draw()
|
27 |
+
pil_image = Image.frombytes('RGB', canvas.get_width_height(), canvas.tostring_rgb())
|
28 |
+
plt.close(fig)
|
29 |
+
return pil_image
|
30 |
+
def get_bounding_box(ground_truth_map):
|
31 |
+
y_indices, x_indices = np.where(ground_truth_map > 0)
|
32 |
+
x_min, x_max = np.min(x_indices), np.max(x_indices)
|
33 |
+
y_min, y_max = np.min(y_indices), np.max(y_indices)
|
34 |
+
H, W = ground_truth_map.shape
|
35 |
+
x_min = max(0, x_min - np.random.randint(0, 20))
|
36 |
+
x_max = min(W, x_max + np.random.randint(0, 20))
|
37 |
+
y_min = max(0, y_min - np.random.randint(0, 20))
|
38 |
+
y_max = min(H, y_max + np.random.randint(0, 20))
|
39 |
+
bbox = [x_min, y_min, x_max, y_max]
|
40 |
+
return bbox
|
41 |
+
def get_output(image,prompt):
|
42 |
+
inputs = processor(image,input_boxes=[[prompt]],return_tensors='pt').to(device)
|
43 |
+
model.eval()
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs = model(**inputs,multimask_output=False)
|
46 |
+
output_proba = torch.sigmoid(outputs.pred_masks.squeeze(1))
|
47 |
+
output_proba = output_proba.cpu().numpy().squeeze()
|
48 |
+
output = (output_proba > 0.5).astype(np.uint8)
|
49 |
+
return output
|
50 |
+
def generate_image(np_array):
|
51 |
+
return Image.fromarray((np_array*255).astype('uint8'),mode='L')
|
52 |
+
def iou_calculation(result1, result2):
|
53 |
+
intersection = np.logical_and(result1, result2)
|
54 |
+
union = np.logical_or(result1, result2)
|
55 |
+
iou_score = np.sum(intersection) / np.sum(union)
|
56 |
+
iou_score = "{:.4f}".format(iou_score)
|
57 |
+
return float(iou_score)
|
58 |
+
def calculate_pixel_accuracy(image1, image2):
|
59 |
+
if image1.size != image2.size or image1.mode != image2.mode:
|
60 |
+
image1 = image1.resize(image2.size, Image.BILINEAR)
|
61 |
+
if image1.mode != image2.mode:
|
62 |
+
image1 = image1.convert(image2.mode)
|
63 |
+
width, height = image1.size
|
64 |
+
total_pixels = width * height
|
65 |
+
image1 = image1.convert("RGB")
|
66 |
+
image2 = image2.convert("RGB")
|
67 |
+
pixels1 = image1.load()
|
68 |
+
pixels2 = image2.load()
|
69 |
+
num_correct_pixels = 0
|
70 |
+
for y in range(height):
|
71 |
+
for x in range(width):
|
72 |
+
if pixels1[x, y] == pixels2[x, y]:
|
73 |
+
num_correct_pixels += 1
|
74 |
+
accuracy = num_correct_pixels / total_pixels
|
75 |
+
return accuracy
|
76 |
+
def calculate_f1_score(image1, image2):
|
77 |
+
if image1.size != image2.size or image1.mode != image2.mode:
|
78 |
+
image1 = image1.resize(image2.size, Image.BILINEAR)
|
79 |
+
if image1.mode != image2.mode:
|
80 |
+
image1 = image1.convert(image2.mode)
|
81 |
+
width, height = image1.size
|
82 |
+
image1 = image1.convert("L")
|
83 |
+
image2 = image2.convert("L")
|
84 |
+
np_image1 = np.array(image1)
|
85 |
+
np_image2 = np.array(image2)
|
86 |
+
np_image1_flat = np_image1.flatten()
|
87 |
+
np_image2_flat = np_image2.flatten()
|
88 |
+
true_positives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat == 255))
|
89 |
+
false_positives = np.sum(np.logical_and(np_image1_flat != 255, np_image2_flat == 255))
|
90 |
+
false_negatives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat != 255))
|
91 |
+
precision = true_positives / (true_positives + false_positives + 1e-7)
|
92 |
+
recall = true_positives / (true_positives + false_negatives + 1e-7)
|
93 |
+
f1_score = 2 * (precision * recall) / (precision + recall + 1e-7)
|
94 |
+
return f1_score
|
95 |
+
def calculate_dice_coefficient(image1, image2):
|
96 |
+
if image1.size != image2.size or image1.mode != image2.mode:
|
97 |
+
image1 = image1.resize(image2.size, Image.BILINEAR)
|
98 |
+
if image1.mode != image2.mode:
|
99 |
+
image1 = image1.convert(image2.mode)
|
100 |
+
width, height = image1.size
|
101 |
+
image1 = image1.convert("L")
|
102 |
+
image2 = image2.convert("L")
|
103 |
+
np_image1 = np.array(image1)
|
104 |
+
np_image2 = np.array(image2)
|
105 |
+
np_image1_flat = np_image1.flatten()
|
106 |
+
np_image2_flat = np_image2.flatten()
|
107 |
+
true_positives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat == 255))
|
108 |
+
false_positives = np.sum(np.logical_and(np_image1_flat != 255, np_image2_flat == 255))
|
109 |
+
false_negatives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat != 255))
|
110 |
+
dice_coefficient = (2 * true_positives) / (2 * true_positives + false_positives + false_negatives)
|
111 |
+
return dice_coefficient
|
112 |
+
|
113 |
+
|
114 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
115 |
+
st.set_page_config(layout='wide')
|
116 |
+
ds = load_dataset('ahishamm/combined_masks',split='train')
|
117 |
+
s1 = ds[0]['image']
|
118 |
+
s2 = ds[1]['image']
|
119 |
+
s3 = ds[2]['image']
|
120 |
+
s4 = ds[3]['image']
|
121 |
+
image_arr = [s1,s2,s3,s4]
|
122 |
+
img = image_select(
|
123 |
+
label="Select a Skin Lesion Image",
|
124 |
+
images=[
|
125 |
+
s1,s2,s3,s4
|
126 |
+
],
|
127 |
+
captions=["sample 1","sample 2","sample 3","sample 4"],
|
128 |
+
return_value='index'
|
129 |
+
)
|
130 |
+
processor = AutoProcessor.from_pretrained('ahishamm/skinsam')
|
131 |
+
model = AutoModelForMaskGeneration.from_pretrained('ahishamm/skinsam_focalloss_base_combined')
|
132 |
+
model.to(device)
|
133 |
+
p = get_bounding_box(np.array(ds[img]['label']))
|
134 |
+
predicted_mask_array = get_output(ds[img]['image'],p)
|
135 |
+
predicted_mask = generate_image(predicted_mask_array)
|
136 |
+
result_image = show_mask(ds[img]['image'],predicted_mask_array)
|
137 |
+
with st.container():
|
138 |
+
col1, col2, col3 = st.columns(3)
|
139 |
+
with col1:
|
140 |
+
st.image(ds[img]['image'],caption='Original Skin Lesion Image',use_column_width=True)
|
141 |
+
with col2:
|
142 |
+
st.image(predicted_mask,caption='Predicted Mask',use_column_width=True)
|
143 |
+
with col3:
|
144 |
+
st.write(f'The IOU Score: {iou_calculation(ds[img]["label"],predicted_mask)}')
|
145 |
+
st.write(f'The Pixel Accuracy: {calculate_pixel_accuracy(ds[img]["label"],predicted_mask)}')
|
146 |
+
st.write(f'The Dice Coefficient Score: {calculate_dice_coefficient(ds[img]["label"],predicted_mask)}')
|
147 |
+
with st.container():
|
148 |
+
col4,col5,col6 = st.columns(3)
|
149 |
+
with col5:
|
150 |
+
st.image(result_image,caption='Mask Overlay',use_column_width=True)
|
151 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit-image-select
|
2 |
+
streamlit
|
3 |
+
tqdm
|