import gradio as gr from gradio_client import Client, handle_file import re import time import os from dotenv import load_dotenv # Load environment variables load_dotenv() # Get Hugging Face token from environment variable hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN") # Initialize client with auth client = Client( "levihsu/OOTDiffusion", hf_token=hf_token ) def generate_outfit(model_image, garment_image, n_samples=1, n_steps=20, image_scale=2, seed=-1): if model_image is None or garment_image is None: return None, "Please upload both model and garment images" max_retries = 3 for attempt in range(max_retries): try: # Use the client to predict result = client.predict( vton_img=handle_file(model_image), garm_img=handle_file(garment_image), n_samples=n_samples, n_steps=n_steps, image_scale=image_scale, seed=seed, api_name="/process_hd" ) # If result is a list, get the first item if isinstance(result, list): result = result[0] # If result is a dictionary, try to get the image path if isinstance(result, dict): if 'image' in result: return result['image'], None else: return None, "API returned unexpected format" return result, None except Exception as e: error_msg = str(e) if "exceeded your GPU quota" in error_msg: wait_time_match = re.search(r'retry in (\d+:\d+:\d+)', error_msg) wait_time = wait_time_match.group(1) if wait_time_match else "60:00" # Default to 1 hour wait_seconds = sum(int(x) * 60 ** i for i, x in enumerate(reversed(wait_time.split(':')))) # Convert wait time to seconds if attempt < max_retries - 1: time.sleep(wait_seconds) # Wait before retrying return None, f"GPU quota exceeded. Please wait {wait_time} before trying again." else: return None, f"Error: {str(e)}" # Create Gradio interface with gr.Blocks() as demo: gr.Markdown(""" ## Outfit Diffusion - Try On Virtual Outfits ⚠️ **Note**: This demo uses free GPU quota which is limited. To avoid errors: - Use lower values for Steps (10-15) and Scale (1-2) - Wait between attempts if you get a quota error - Sign up for a Hugging Face account for more quota """) with gr.Row(): with gr.Column(): model_image = gr.Image( label="Upload Model Image (person wearing clothes)", type="filepath", height=300 ) model_examples = [ "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/ba5ba7978e7302e8ab5eb733cc7221394c4e6faf/model_5.png", "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/40dade4a04a827c0fdf63c6c70b42ef26480f391/01861_00.jpg", "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/3c4639c5fab3cdcd3239609dca5afee7b0677286/model_6.png", "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/0089171df270f4532eec3d80a8f36cc8218c6840/01008_00.jpg" ] gr.Examples(examples=model_examples, inputs=model_image) garment_image = gr.Image( label="Upload Garment Image (clothing item)", type="filepath", height=300 ) garment_examples = [ "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/180d4e2a1139071a8685a5edee7ab24bcf1639f5/03244_00.jpg", "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/584dda2c5ee1d8271a6cd06225c07db89c79ca03/04825_00.jpg", "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/a51938ec99f13e548d365a9ca6d794b6fe7462af/049949_1.jpg", "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/2d64241101189251ce415df84dc9205cda9a36ca/03032_00.jpg", "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/44aee6b576cae51eeb979311306375b56b7e0d8b/02305_00.jpg", "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/578dfa869dedb649e91eccbe566fc76435bb6bbe/049920_1.jpg" ] gr.Examples(examples=garment_examples, inputs=garment_image) with gr.Column(): output_image = gr.Image(label="Generated Output") error_text = gr.Markdown() # Add error display with gr.Row(): with gr.Column(): n_samples = gr.Slider( label="Number of Samples", minimum=1, maximum=5, step=1, value=1 ) n_steps = gr.Slider( label="Steps (lower = faster, try 10-15)", minimum=1, maximum=50, step=1, value=10 # Reduced default ) image_scale = gr.Slider( label="Scale (lower = faster, try 1-2)", minimum=1, maximum=5, step=1, value=1 # Reduced default ) seed = gr.Number( label="Random Seed (-1 for random)", value=-1 ) generate_button = gr.Button("Generate Outfit") # Set up the action for the button generate_button.click( fn=generate_outfit, inputs=[model_image, garment_image, n_samples, n_steps, image_scale, seed], outputs=[output_image, error_text] ) # Launch the app demo.launch()