ahmadalfakeh commited on
Commit
8e522f4
·
verified ·
1 Parent(s): 53bf54e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -36
app.py CHANGED
@@ -1,63 +1,70 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
- import spaces
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("meta-llama/Meta-Llama-3.1-405B-FP8")
8
-
9
- @spaces.GPU()
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
 
26
  messages.append({"role": "user", "content": message})
27
 
28
  response = ""
29
 
 
30
  for message in client.chat_completion(
31
- messages,
32
  max_tokens=max_tokens,
33
  stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
 
 
 
 
 
 
 
 
 
 
 
60
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+
4
+ # Initialize the Hugging Face Inference Client
5
+ client = InferenceClient(model="meta-llama/Meta-Llama-3.1-405B-FP8")
6
+
7
+ # Define the response generation function
8
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
 
 
 
 
 
 
 
 
 
9
  messages = [{"role": "system", "content": system_message}]
10
 
11
+ # Add previous messages to the conversation
12
  for val in history:
13
  if val[0]:
14
  messages.append({"role": "user", "content": val[0]})
15
  if val[1]:
16
  messages.append({"role": "assistant", "content": val[1]})
17
 
18
+ # Add the new user message
19
  messages.append({"role": "user", "content": message})
20
 
21
  response = ""
22
 
23
+ # Generate the response using the model
24
  for message in client.chat_completion(
25
+ messages=messages,
26
  max_tokens=max_tokens,
27
  stream=True,
28
  temperature=temperature,
29
  top_p=top_p,
30
  ):
31
  token = message.choices[0].delta.content
 
32
  response += token
33
  yield response
34
 
35
+ # Define the ChatGPT-like interface
36
+ with gr.Blocks(css=".gradio-container {max-width: 900px; margin: auto;}") as demo:
37
+ gr.Markdown("<h1 style='text-align: center;'>ChatGPT-like Interface</h1>")
38
+
39
+ chatbot = gr.Chatbot(height=500)
40
+ with gr.Row():
41
+ with gr.Column(scale=6):
42
+ msg = gr.Textbox(
43
+ show_label=False,
44
+ placeholder="Type your message here...",
45
+ container=False
46
+ ).style(container=False)
47
+ with gr.Column(scale=1, min_width=100):
48
+ send_btn = gr.Button("Send").style(full_width=True)
49
+
50
+ with gr.Accordion("Settings", open=False):
51
+ system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message")
52
+ max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
53
+ temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
54
+ top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
55
+
56
+ def user_interaction(user_message, history, system_message, max_tokens, temperature, top_p):
57
+ history = history or []
58
+ history.append((user_message, None))
59
+ bot_response = respond(user_message, history, system_message, max_tokens, temperature, top_p)
60
+ history[-1] = (user_message, next(bot_response))
61
+ for token in bot_response:
62
+ history[-1] = (user_message, token)
63
+ yield history
64
 
65
+ msg.submit(user_interaction, [msg, chatbot, system_message, max_tokens, temperature, top_p], chatbot)
66
+ send_btn.click(user_interaction, [msg, chatbot, system_message, max_tokens, temperature, top_p], chatbot)
67
+ send_btn.click(lambda: "", None, msg) # Clear the input box after sending
68
 
69
  if __name__ == "__main__":
70
+ demo.launch()