Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
st.set_page_config(page_title="GPT-2 Text Generator", layout="centered") | |
#tokenizer = AutoTokenizer.from_pretrained("ahmadmac/Pretrained-GPT2") | |
#model = AutoModelForCausalLM.from_pretrained("ahmadmac/Pretrained-GPT2") | |
tokenizer = AutoTokenizer.from_pretrained("ahmadmac/DistillGPT2-CSV") | |
model = AutoModelForCausalLM.from_pretrained("ahmadmac/DistillGPT2-CSV") | |
#google_api_key= | |
import google.generativeai as genai | |
GOOGLE_API_KEY=os.environ["google_api_key"] | |
genai.configure(api_key=GOOGLE_API_KEY) | |
# def generate_text(prompt): | |
# inputs = tokenizer(prompt, return_tensors="pt") | |
# outputs = model.generate(**inputs, max_length=50) | |
# generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# return generated_text | |
gemini_model = genai.GenerativeModel('gemini-1.5-pro') | |
def generate_text(input_text): | |
input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
trained_output = model.generate(input_ids, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id) | |
trained_response = tokenizer.decode(trained_output[0], skip_special_tokens=True) | |
prompt = f"Improve this text to make it clearer and more concise: {trained_response}" | |
generated_text = gemini_model.generate_content(prompt) | |
return generated_text | |
st.title("GPT-2 Text Generator") | |
st.write("Enter a prompt to generate text using GPT-2") | |
user_input = st.text_input("Prompt") | |
if st.button("Generate"): | |
if user_input: | |
with st.spinner("Generating..."): | |
generated_text = generate_text(user_input) | |
st.write(generated_text.text) | |
else: | |
st.warning("Please enter a prompt") | |